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Progress on a fully gyrokinetic transport code

J. Candy, M.R. Fahey and R.E. Waltz

I Introduction

This paper reports on recent progress in connection with the Steady-State Gy-
rokinetic Transport Code (SSGKT) project, a Scientific Discovery Through
Advanced Computing (SciDAC) initiative funded by the US Office of Ad-
vanced Computing Computing Research (OASCR). The goal is to develop
a transport code that integrates micro-scale gyrokinetic simulations into a
framework for practical multi-scale simulation of a burning plasma core, the
International Thermonuclear Experimental Reactor (ITER) in particular.
The resulting transport code will be used to predict the performance (the
fusion energy gain, Q) given the H-mode pedestal temperature and density.
At present, projections of this type rely on transport models like GLF23 [1],
which are based on approximate fits to the results of linear and nonlinear
simulations. Our goal is to improve these performance projections by di-
rect use of nonlinear gyrokinetic simulations. The method of approach is
to couple a master transport code to multiple independent (each massively
parallel) GYRO [2] simulations. The proposed method will allow highly effi-
cient use of very large processor counts (several thousand); the master code
must only compute relatively simple feedback information based on trans-
port power balance, and the independent instances of GYRO will scale very
well because of the relatively low processor count per instance (32 to 256).
Each instance of GYRO will compute local radial fluxes to be periodically
communicated to the master. A rough schematic of the design is shown in
Fig. 1. The key numerical challenge is to determine the most efficient feed-
back algorithm. Although the power source and transport balance coding
in the master are standard, it is nontrivial to design a feedback loop that
can cope with outputs that are both intermittent and extremely expensive
to compute.
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Fig. 1. TGYRO schematic. Multiple instances of GYRO, each with its own MPI

communicator, are weakly coupled through a transport module (T) which provides
feedback based on a integrated power balance.

II Formulation

In principle, we begin with the full-F gyrokinetic equation (electrostatic for
simplicity) written in conservative form:

∂F

∂t
+

∂

∂R
·
(
ṘBF

)
+

∂

∂v‖

(
v̇‖ BF

)
= C[F, F ] + S(x, v, t) , (1)

where F is the total distribution function, C is the nonlinear collision opera-
tor, S is the source (of particles, momentum, energy) and B is the magnetic
field strength. This master equation describes physics at multiple scales: the
slow, long-scale balance between sources and quasi-steady turbulence is re-
flected in the ensemble-averaged distribution F̂ , whereas the fast, short-scale
turbulence determines the fluctuating part δf . Short-scale GK simulations
must ensure that the equilibrium does not evolve (that is, that δ̂f = 0), such
that the long-scale steady-state transport equation balances S with turbu-
lent loss. Also, the ensemble average F̂ should be Maxwellian, so that the
collision operator can be linearized in the usual way assuming δf ≪ F̂ . Inte-
grating Eq. (1) over velocity-space, and further taking a flux-surface average
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(denoted by angular brackets) gives

∂〈nσ〉

∂t
+

1

V ′

∂

∂r
(V ′〈Γσ〉) = 〈

∫
d3v Sσ〉 ∼ 0 , (2)

∂〈pi + pe〉)

∂t
+

1

V ′

∂

∂r
(V ′〈Qi + Qe〉) = 〈

∫
d3v E (Si + Se)〉 . (3)

For simplicity, we assume Ti = Te and sum the electron and ion energy equa-
tions to avoid dealing with energy exchange terms. Quasi-steady solution to
Eqs. (2) and (3) thus take the form:

Γe(x, y) = Γi(x, y) ∼ 0 and Qe(x, y) + Qi(x, y) = Qtarget(n, T ) , (4)

where

x = −
a

n

∂n

∂r
, y = −

a

T

∂T

∂r
, (5)

and

Qtarget(n, T ) =
1

V ′

∫ r

0

dr V ′(r)

∫
d3v E (Sα + Saux) . (6)

We ignore radiation loss and other effects, prefering simply to describe ap-
proach in its most basic form. We want to find the roots of the algebraic
equations, Eq. (4), at radial points rp for p = 1, . . . , Np. Each instance
of GYRO functions independently, with an exchange of information only
through the transport balance. Further, each instance of GYRO can operate
on its own intrinsic time-scale, a/cs, length scale, ρs, and therefore its own
local (gyroBohm) diffusion scale χGB

.
= ρ2

scs/a. We remark that at the small
values of ρ∗ = ρs/a in ITER, gyroBohm scaling and the locality of turbu-
lence is largely assured. With larger ρ∗ machines like DIII-D, there may be
some nonlocal transport – in which the temperature gradient at one distant
location may effect the power flow at another [3].

III Method of Solution

Methods of solution are preliminary and under development. For the re-
stricted case of Te = Ti considered here, one strategy is to construct analytic
fits of the fluxes in the (x, y) plane, including the critical gradient locations
(see Fig. 2 for crude intensity plots). Then, the problem is reduced to simple
root finding. Alternatively, we could proceed iteratively. Define the gra-
dient vector g = (x, y)T, the profile vector p = (n, T )T and the flux vector
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Fig. 2. Contour plots of (χi + χe)/χGB as a function of x = a/Ln and y = a/LT .
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Fig. 3. Illustration of convergent iterations in the solultion of Eq. (4). Density
profile was fixed in this simulation, and Tped = 7 kev.

f = (Γ, Q)T, where T denotes a transpose. Procedure: Begin with pedestal
boundary condition p = p∗, and arbitrary initial choice of g. Then:

1. Integrate g to find p(r) = p∗ exp

[∫ r∗

r

g(r′) dr′
]
.

2. Compute ftarget = f(p) from Eq. (6).

3. Run GYRO with input g to obtain fGYRO = fi(g) + fe(g).

4. Update g based on difference fGYRO − ftarget (secant method, etc).

5. Goto Step 1.

An sample result is plotted in Fig. 3, showing a relaxation of the initial
temperature to a final temperature which is essentially consistent with the
critical gradient. This test treated an ITER-like circular plasma with GYRO
simulations at 4 radial points r/a = [0.2, 0.4, 0.6, 0.8], including alpha heating
plus 40 MW of auxiliary power, but ignoring radiation losses. A pedestal
temperature of Tped = 7 keV was used. The density profile was fixed for this
test. The reader should take the result as merely a proof-of-principle of the
method, not as a meaningful prediction of ITER performance.
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