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Equilibrium and ideal magnetohydrodynamic (MHD) stability studies are reported for

Compact Stellarator (ARIES-CS) reactor design equilibria based on a scaled three-period

NCSX configuration and a two-period quasi-axisymmetric variant, the MHH2 stellarator.

With a stabilizing shell at about twice the minor radius, robustly stable equilibria up to β=6%

are achievable. Recent experiments raise questions as to the applicability of linear MHD

stability in stellarators since the predicted stability limits appear to be significantly exceeded.

A context for interpreting this question, consistent with tokamak experience, is discussed;

both the equilibria and nonlinear consequences need to be more carefully considered.

Nonlinear stability is analyzed by computing solutions with highly resolved discontinuities

to effectively simulate current sheets and islands. This yields β limits in better agreement

with measured values.

I.  Linear Ideal MHD Stability Limits
A first step in evaluating the prospects for any proposed fusion experiment is to

determine reference equilibria and test the linear stability properties. For an equilibrium

based on a scaled-up three-period NCSX configuration with β = 4.1% and A = 4.47, the

linear MHD stability was determined using the TERPSICHORE [1] code. The stability

results for this equilibrium are restricted to a range of external conformal conducting walls

between aw = 1.7 and 2.7 times the minor radius of the plasma. For the wall in this range, the

plasma is stable.

A sequence of higher β equilibria was then constructed with the volume, average major

radius, average minor radius, and vacuum toroidal field held fixed as β was increased

through uniformly scaling the pressure profile. Also, the calculation was a fixed boundary

calculation. The major change in the equilibria is that the magnetic axis shifts outward by

about 5% as β increases. This sequence was then tested for ideal stability. With a conformal

stabilizing shell at twice the plasma minor radius, robustly stable equilibria up to 6% are

achievable. The computed growth rates were sensitive to mesh size but the stability bound-

aries were unchanged.

A two-period variant, the MHH2 stellarator, with good quasi-axisymmetry comparable to

that in a tokamak with toroidal ripple, which has some engineering advantages, was also

considered. This can be generated by a set of only eight moderately twisted modular coils; a

fixed-boundary MHH2 equilibrium was reproduced with β = 4.52%. Figure 1 shows a

comparison with the three-field period equilibrium. The main shape difference is the lower
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order shaping near Nfpφ ~ 180 deg. The rotational transform profiles, however, are very dif-

ferent; for MHH2, the ι profile monotonically decreases over most of the minor radius, in-

creasing again only near the edge. For the three field period equilibrium, the converse is true.

A series of increasing β MHH2

equilibria was then constructed with

〈β〉 = 4.52%, 5.71%, and 6.92% as for

the previous case. The ι profile was ad-

justed to force the average current

density to vanish as β increases; the

bootstrap current was not self consis-

tently calculated. These equilibria were

tested for ideal MHD stability. The

Mercier criterion indicates stability at

all surfaces up to β =5%. The

Nfp φ = 0o Nfp φ = 90o

  MHH2
(2 period)
β = 4.5%

Nfp φ = 180o Nfp φ = 270o

  NCSX
(3 period)
β = 4.1%

 

Fig. 1.  Comparison of the three- and two-period
candidate equilibria at four toroidal cross sections.

TERPSICHORE studies find the growth rates are small and insensitive to wall position.

They remain small up to β=6.9% indicating marginal stability to free boundary modes.

II.  Stellarator ββββ Limits
W7-AS and LHD have exceeded predicted β limits by significant margins; the calculated

local limits of less than 2% were exceeded, with β reaching above 3% in both devices.

Stellarator designs that are based on optimizing against linear ideal MHD stability are

therefore questionable. There are two possible resolutions based on experience with tokamak

stability limits. First, the discharge equilibria are not necessarily those used in the stability

predictions. Second, the nonlinear consequences of linearly unstable ideal modes need to be

understood; heuristically, internal modes surrounded by a fairly robustly stable outer shell

can be expected to be benign and not limit β directly.

A.  Equilibrium Questions. Experience with tokamaks has shown in recent years that the

ι (or q) profile is not necessarily what theoretical arguments suggest it should be. It is impor-

tant to use actual reconstructed discharge equilibria and test the sensitivity of stability predic-

tions to profile and boundary variations within the experimental errors [2]. Reducing these

errors is crucial to obtaining unambiguous predictions. Critical parameters are the last closed

flux surface, the q and pressure gradient profiles, and the bootstrap current, especially at the

edge. Considerable success has been achieved in demonstrating the quantitative validity of

ideal limits, mode structures and growth rates, when these are properly accounted for [2].

For stellarators, experimental measurements of the pressure and ι profiles at finite β, like

those in large tokamaks, are needed to pin down the apparent violation of predicted stability

limits. For example, the bootstrap current is often assumed negligible but may not necessar-

ily be so. Even the nested surfaces assumption may not be the case in stellarator discharges.

B.  Nonlinear Stability Consequences. Experience with tokamaks has also shown that

some predicted ideal limits can be violated but that the nonlinear consequences do not
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directly limit β or lead to disruptions. Examples are sawteeth and ELMs. Also, local Mercier,

and even ballooning stability, are generally considered ignorable when unstable only over a

small region. This is fairly well understood intuitively but the same understanding is not yet

available for stellarators.

For stellarators, there are good experimental and theoretical justifications for ignoring

local stability. For global modes, the nonlinear consequences need to be examined on a case-

by-case basis. Nonlinear stability can be analyzed by computing weak solutions for 3-D

equilibria, with discontinuities to simulate current sheets and island. The key is to accurately

resolve the discontinuities by ensuring that the ideal equations are in conservative form.

The MHD equations describing force balance can be put in conservation form: ∇∇∇∇· T = 0,

∇∇∇∇ · B = 0 where the Maxwell stress tensor T = B B – (B2/2 + p) I. Finite difference

equations that respect the conservation form telescope into an approximate statement of force

balance over the boundary when summed over a test volume:  ∫∫T · dS = 0. In a simplified

example using Burgers equation as a model problem for an RFP in a slab, x ∈ (1,+1):  2Ψx

Ψxx = Ψx
2

x
( )  = ηΨxxx, subject to boundary conditions Ψ (–1) = Ψ (–1) = 0, and Ψx (–1) =

0, a conservative difference scheme:  (Ψn+1 – Ψn)2 – (Ψn – Ψn-1)2 = η(Ψn+2 – 3Ψn+1 +

3Ψn – Ψn-1) imposes force balance in the limit where η = 0, across the discontinuity at x = 0,

so that the solution reduces to Ψ = 1 – |x|. However, a non- conservative finite difference

scheme defined with an additional diffusive term, ε(Ψn+1 – 2Ψn + Ψn-1)2, added to the left

hand side, diverges when η is much smaller than the mesh size ε ≠ 0. When η ~ ε, force

balance is not maintained by a non-conservative scheme; this is exhibited numerically by

inequality of the slopes on the two sides of the limiting solution Ψ  = 1 – |x|. which

characterize the magnetic field on opposite sides of a current sheet and simulates a chain of

magnetic islands.

The NSTAB [4] equilibrium and stability code applies the MHD variational principle to

compute weak solutions of the conservation form of the dynamical equations. Solutions are

represented in terms of Clebsch Potentials. The code computes fixed boundary 3-D

equilibria and nonlinear stability is tested by applying a mountain-pass theorem that requires

a search for multiple or bifurcated equilibria. The code utilizes a finite difference scheme

based on the above discussion that captures discontinuities with unusually fine resolution.

III.  Discussion
It is significant that both the ARIES-CS equilibria have linear ideal MHD β limits above

5% since the evidence from experiments suggests that these may be lower limits. To resolve

the question of the meaning of these limits requires high quality equilibrium reconstructions

and stability calculations using the experimental equilibria to determine which limits are

really being violated. Then, robust nonlinear calculations are needed to obtain an intuitive feel

for the consequences of the instabilities predicted. This is not yet at hand and consequently,

it is not clear at present how valuable linear MHD stability predictions using nested flux sur-
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face equilibria really are; they might, in fact, be quite misleading. Free boundary non-nested

equilibria, and/or nonlinear stability studies may be needed to obtain meaningful predictions.

The existence of a nested flux surface equilib-

rium can be considered as either an equilibrium

problem or a stability problem; unstable equilibria

with nested surfaces will evolve to non-nested sur-

faces with lower energy if physically possible.

Equilibrium codes can therefore be considered sta-

bility codes, since an equilibrium computed under

certain constraints must be stable unless those nu-

merically imposed constraints can be avoided by a

physically valid motion. NSTAB makes use of this

to determine nonlinear stability when bifurcated

equilibria exist. The code does impose nested flux

surfaces but permits well-resolved discontinuities to

simulate islands. The major constraint imposed, is

the fixed boundary; NSTAB can only guarantee

 

Fig. 2. Poincare map of the flux
surfaces at four cross sections over one
field period of a bifurcated LHD
equilibrium at β = 0.04. For a broad
pressure profile p = p0(1 - s2), this
solution developed a ballooning mode
but remained marginally stable.

guarantee stability to internal global modes.

From a theoretical and numerical point of view, the first step then in resolving the ques-

tions formulated here, is to compare linear and nonlinear predictions and to compare both

against experiments. The nonlinear stability test in NSTAB yields beta limits that are in

substantial agreement with measured values; the calculations show that LHD is marginally

stable at the largest values of β achieved and there is similar agreement for W7-AS.

IV.  Conclusions
This work shows that one can obtain linear ideal MHD β limits for a compact stellarator

reactor of order of 6%. Future cork will examine the sensitivity of the linear β limits for the

two configurations to profile and shape variations. These are linear stability limits and there

are questions as to their relevance. In the longer term, these questions need to be resolved by

examining the stability of actual reconstructed discharge equilibria with measured ι and

pressure, and the sensitivity to profile and boundary variations. Additional discrepancies

should be resolved by nonlinear studies and routine comparisons with observations. This

will entail repeating the nonlinear calculations for the ARIES-CS equilibria by searching for

bifurcated equilibria as described in Section II.B. The correlation of computations with

observations was, in fact, exploited to design the two field period MHH2 stellarator.
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