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Progress in the Peeling-Ballooning Model of ELMs:
Toroidal Rotation and 3D Nonlinear Dynamics

P.B. Snyder1, H.R. Wilson2, X.Q. Xu3, and A.J. Webster2

1General Atomics, P.O. Box 85608, San Diego, CA 92186-5608, USA
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3Lawrence Livermore National Laboratory, Livermore, CA, USA

Understanding the physics of the H-Mode pedestal and edge localized modes (ELMs)
is very important to next-step fusion devices for two primary reasons: 1) The pressure at
the top of the edge barrier (“pedestal height”) strongly impacts global confinement and
fusion performance, and 2) large ELMs lead to localized transient heat loads on material
surfaces that may constrain component lifetimes. The development of the peeling-
ballooning model has shed light on these issues by positing a mechanism for ELM onset
and constraints on the pedestal height. The mechanism involves instability of ideal
coupled “peeling-ballooning” modes driven by the sharp pressure gradient and consequent
large bootstrap current in the H-mode edge. It was first investigated in the local, high-n
limit [1], and later quantified for non-local, finite-n modes in general toroidal geometry
[2,3]. Important aspects are that a range of wavelengths may potentially be unstable, with
intermediate n's (n ~ 3-30) generally limiting in high performance regimes, and that sta-
bility bounds are strongly sensitive to shape [Fig 1(a)], and to collisionality (i.e. tempera-
ture and density) [4] through the bootstrap current. The development of efficient MHD
stability codes such as ELITE [3,2] and MISHKA [5] has allowed detailed quantification
of peeling-ballooning stability bounds (e.g. [6]) and extensive and largely successful com-
parisons with observation (e.g. [2,6-9]). These previous calculations are ideal, static, and
linear. Here we extend this work to incorporate the impact of sheared toroidal rotation, and
the non-ideal, nonlinear dynamics which must be studied to quantify ELM size and heat
deposition on material surfaces.
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Fig. 1.  (a) Schematic diagram of peeling-ballooning stability bounds vs. edge current and
pressure gradient for different shaped equilibria. (b) Growth rate vs flow shear for n→∞ (circles)
and for two finite values of n.
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The effect of sheared toroidal rotation on ideal magnetohydrodynamic (MHD) instabili-

ties has been previously studied for low n instabilities with numerical codes such as MARS

(e.g. [10]), and also in the n→∞ limit, using eikonal methods [11,12]. For low n ideal modes

in tokamaks, the effect of experimentally observed rotation is usually small. However, in the

high n limit, the effect of rotation can be strongly stabilizing [11,12]. Specifically, in the

n→∞, weak flow shear limit, flow shear leads to a reduction from the conventional static

ballooning growth rate γ(θ0), where θ0 is chosen to maximize γ, to a rotationally averaged

γ = 1/2π ∫ γ(θ0) dθ0 [11], resulting in a discontinuity in the predicted growth rate for very

small flow. We have developed an eigenmode formalism, allowing finite-n and non-local

geometry, in order to resolve this discontinuity and to allow calculation of flow shear effects

on finite-n ballooning and peeling modes, including growth rate and mode structure. The

formalism extends that given in Ref. [3] to include leading order flow shear (nΩ∼1, Ω′~1)

and compression terms. Initial studies employed this formalism in an s-α code, to connect

with previous results and characterize important physics trends [13]. In the n→∞ limit [given

by circles in Fig. 1(b)], the new formalism successfully reproduces the previous results given

by Miller [12] using an eikonal method. The eigenmode formalism also resolves the low

rotation discontinuity — in the s-α case this is done by incorporating an α  profile,

α = α0 exp[–(1–r/r0)2/2L2], where Λ≡L(nq)1/2 characterizes the toroidal mode number n [13].

For large n [e.g. the Λ=2.62 case in Fig. 1(b)], a rapid transition from the conventional

ballooning result (0.62) to the rotational ballooning occurs, while at lower n [e.g. Λ=1.35 in

Fig. 1(b)], the transition is slower.

An important question then, is whether rotation shear strongly affects typical interme-

diate-n peeling-ballooning modes in observed conditions. To address this, we have incorpo-

rated the rotational formalism into the full ELITE code, and studied a number of cases. The

result is that, as in the s-α case, there is a strong radial narrowing of the mode which occurs

with increasing rotation shear. Very close to marginal stability (γ/ωA~10-3), substantial sta-

bilization is possible. However, away from the marginal point, rotational shear generally has

only a small effect on peeling-ballooning growth rates, and thus flow shear is not expected to

measurably change the expected threshold for edge peeling-ballooning modes {a result con-

sistent with the generally good agreement found in comparisons of static peeling-ballooning

calculations with experiment (as in Refs. [2,6-9])}, though it may be more important in cer-

tain special cases such as low magnetic shear, and low aspect ratio. An example for DIII-D

discharge 113207 is shown in Fig. 2. The most unstable mode (largest γ/ω*) in the absence of

rotation is n=11. Its growth rate (along with n=8) is shown in Fig. 2(a). While a small

decrease in the compressionless growth rate occurs as rotation is increased toward the meas-

ured value (4 kHz), the change is very small, and indeed destabilization is found at large
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rotation, and in the presence of compression (Γ=5/3). The real frequency of the mode scales

roughly linearly with increasing rotation, matching nΩ just outside the pedestal top, near the

middle of the mode. The mode width decreases with rotation as can be seen from

Figs. 2(b,c). Fast CER measurements have recently allowed study of observed rotation

profiles leading up to, and during ELMs (e.g. [14]). In a calculation using measured DIII-D

profiles from discharge 115556 just before the ELM occurs, we find that the calculated

eigenfrequency of the most unstable mode (n=9) is consistent with the observed rotation

during the ELM (before the edge rotation decays following the ELM) [Fig. 2(d)].

Fig. 2. (a) Growth rate vs. pedestal flow, and n=11 mode structure for (b) no flow and (c) Ωped = 10 kHz.
(d) Measured rotation profile before and during an ELM. The measured rotation during an ELM is compared to
the calculated mode rotation using pre-ELM profiles.

While linear stability studies have proved useful for understanding ELM onset and ped-

estal constraints, quantitative prediction of ELM size and heat deposition on material sur-

faces requires nonlinear dynamical studies. Nonlinear H-mode edge physics studies are in

general quite challenging, due to the very wide range of relevant spatiotemporal scales, and

the breakdown of a number of approximations (e.g. small perturbations, locality) that have

simplified core simulations. Here we focus on the scales of the fast ELM crash event itself,

initializing simulations with peeling-ballooning unstable equilibria and following the mode

dynamics. We employ the 3D reduced Braginskii BOUT code [15], which uses field line

following coordinates for efficiency, and simulates the pedestal and scrape-off layer (SOL)

regions (typically 0.9 < Ψ < 1.1). We study a DIII-D high density Type I ELMing equilib-

rium. In the early phases of the simulation, a fast growing mode is seen in the sharp gradient

region of the pedestal, with approximately the growth rate and spatial structure expected

from linear peeling ballooning calculations [Fig. 3(a), note that ∆n=5 is used, hence what

looks like n=4 in the 1/5 toroidal domain is an n=20 mode]. At later times (t > ~2000) a very

fast burst occurs resulting in the rapid expulsion of particles across the separatrix, in a fila-

mentary structure that is radially extended, but localized in the cross field (toroidal) direction
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as shown in Fig. 3(b). Figure 3(c) shows the extended structure of the burst along the mag-

netic field, at a radial location just outside the separatrix. The filamentary burst has a number

of characteristics that resemble ELM observations on DIII-D and MAST, and nonlinear bal-

looning theory predictions [16]. The fast growing, nonlinear bursting mode also appears

consistent with the basic peeling-ballooning model, as the mode does not occur when

parameters are lowered significantly below the linear peeling-ballooning threshold. Ongoing

studies are focused on extending the duration of the nonlinear simulations, as well as

extending their spatial extent, and eventually starting with a stable equilibrium and pushing it

slowly across the peeling-ballooning stability threshold.

Fig. 3  (a) Density perturbation from nonlinear simulations at early times shows the expected peeling-
ballooning structure (here n=20) in the pedestal region. (b) Later a fast radial burst across the separatrix occurs,
localized toroidally, but extended along the field as shown in (c).
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