OPERATION OF ITER OVER A RANGE OF TOROIDAL FIELDS POSES CHALLENGES FOR THE ECH SYSTEM

• Operation from the design field of 5.3 T to as low as 3.0 T claimed by ITER team

What can the ECH system do at different toroidal fields?

- Self-consistent equilibria were generated at 5.3, 4.9, 4.5, 3.6, and 3.2 T with constant q-profile (Ip=15.4, 14.2, 13.1, 10.4, and 9.3 MA) using TEQ
 - Pressure profile consistent with the equilibrium was generated
 - Pressure profile was scaled with B² to keep beta constant
 - Density profile was scaled with B to keep n/n_{GW} constant
 - $\Rightarrow T_e \text{+} T_i$ scaled with B to keep beta constant
- TORAY-GA was run for the anticipated steering range for each ECH antenna, using 170 GHz power with beam divergence characteristic of the top launcher

CALCULATION OF ELECTRON CYCLOTRON CURRENT DRIVE FOR ITER

- The ITER project calls for ECH to heat and ECCD to control the current profile and to control neoclassical tearing modes
 - 4 antenna locations: 3 near the midplane and 1 near the vessel top
- The performance of the antennas can be well predicted by using ray tracing or beam propagation codes
 - Benchmarking of codes has been carried out under the ITER/ITPA process
 - ★ Similar (but not identical) results are obtained
 - Some codes have been carefully tested against experiment
- In this study the TORAY-GA code is used to explore the potential uses of the 4 ECH launchers over a range of toroidal magnetic fields using the same equilibrium

APPLICABILITY OF ECCD IN ITER IS STRONGLY AFFECTED BY LOCATION OF RESONANCE

 Fundamental resonance intersects q = 2 surface for B_T > 4.4 T

 Second harmonic resonance intersects q = 2 surface for B_T < 3.7 T

ITER SCENARIO 2 PRESSURE PROFILE FROM EQUILIBRIUM INCONSISTENT WITH KINETIC DATA

CONTOURS OF PEAK j_CD (A/cm²/MW) AND PEAK ρ OF j

CONTOURS OF $\delta \rho$ AND PEAK ρ OF jec

NATIONAL FUSION FACILITY SAN DIEGO 153-04/RP/jy

ITER SCENARIO 2 SCALED TO 4.5 T

CONTOURS OF PEAK j_CD (A/cm²/MW) AND PEAK ρ OF j

153-04/RP/jy

CONTOURS OF $\delta\rho$ and peak ρ of jec

ITER SCENARIO 2, SCALED TO 3.6 T

MIDPLANE LAUNCHERS, BT = 3.6 T

SAN DIEGO

ITER SCENARIO 2 SCALED TO 3.2 T

MIDPLANE LAUNCHERS, BT = 3.2 T

NATIONAL FUSION FACILITY SAN DIEGO

153-04/RP/jy

CONCLUSIONS

- The upper launcher is useful only for B greater than 4.5 T or B less than 2.65 T
- For 5.3 T > B > 4.5 T, the peak current density and total driven current for the top launcher are not strongly affected over this range
- For B < 4.5 T, only the midplane launchers will be useful
- For B ~ 4.0 T, the midplane launch may be effective at driving current on the inboard side although second harmonic absorption may reduce the efficiency; this case not yet examined
- At 3.6 T the midplane launch is very inefficient due to the cancelling effects of the Fisch-Boozer and the Ohkawa currents
- At 3.2 T the midplane launch can't reach sufficiently large minor radius to be useful for driving current at q=2 surface (ρ=0.77)
- For B ~ 3.4 T there may be an island of effectiveness for 2/1 NTM suppression

Planned launchers may be effective at driving localized currents near the q=2 surface for B > 4.5 T or B ~ 4.0 T or B ~ 3.4 T or B < 2.65 T

