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Overview

1) Radiated power flashes observed from main chamber volume during
thermal quench of DIII-D disruptions. Origin appears to be mostly
impurities sputtered from main chamber walls.

2) The main-chamber radiation is commonly observed during thermal
quench of DIII-D disruptions; suggests that plasma contact with main
wall occurs often.

3) Initial contact usually appears at inner wall for density-limit disruptions
and divertor plates for other disruptions.

4) Divertor thermography shows broad divertor heat loads during
disruptions; suggests radiation also important for divertor heat load.

5) Magnetic signals show that (m/n) = (1/0) inward shift occurs during
thermal quench. Large (m/n) = (1/1) and (2/1) also common (kink

\ modes?).
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(1. Main wall impurities cause

main-chamber radiation

Time traces for current-limit disruption

« Flashes in main-chamber radiation are
seen to correlate well with peaks in main-
chamber plasma flux, main-chamber
carbon sputtering, and midplane magnetic
fluctuations.
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« During thermal quench (TQ) plasma is
hot so recombination can be ignored.
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Radiation dominantly from carbon ions
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« Impurity radiation much larger than
deuterium radiation during disruption.
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carbon ~ 5 cm in hot plasma, so expect
radiation to be localized to strike points.
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« Carbon lines dominate; radiation mfp for

_J

Supported by U.S. DOE Grant DE-FGO03-
95ER 54294 and Contract DE-ACO03-99ER54463.

(-

(2. Significant main-chamber

radiation observed during TQ of
most DIII-D disruptions

initial radiation flash in main chamber
08 initial tion flash in divertor
o7 & o VDE « Use fast bolometer array to separate
= 0‘6 : : guvrem Il:<mit @ ®  main-chamber from divertor radiation.
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(" 3.SXR and XUV reconstructions
show main-chamber plasma contact
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« Density-limit disruptions: dominant
motion is usually(1/0) into inner wall.
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« Current-limit disruption: initial heat
load is usually in divertor, but
o5  occasionally in outer or inner wall.
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« B-limit disruptions: initial heat load is
o1 dominantly in divertor, consistent with
o very high parallel conductivity.
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4. Divertor thermo%raphy supports

. o .
importance of radiation
80 + densjty-limit ]
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40 « During normal operation, divertor heat load very
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> e ,[\ o localized to strike points (see type-1 ELM).
g w0 S Bl « During TQ, heat load does not correlate to strike
= points - indicates conduction into divertor is not
S % only source of heating.
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6 ELM « Predicted radiation from main chamber (dashed
12 . . . .
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04 deposition.
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5. Magnetic signals show large-scale
plasma motion during TQ

Density-limit Current-limit

322.degree oids

- B

0[degrees]

sl sy

¢ degrees]
23 F B EE

time [ms]

0B, [T]

100
--"im‘[

e
0 (degrees) !

% 70— 300 k
¢ [degrecs] 0

R W w0
6 [degrees]  [degrees]

B-limit

322.dgee okica

— Poloidal mode dominantly m=1 plus
some m>1 during TQ. Rise time often
.. very fast (<] ms), suggesting kink.
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« Toroidal mode inward #=0 translation
plus n=1. Inward shift due to radial
force balance if § drops rapidly due to
impurity radiation.
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