Active MHD Spectroscopy on the Resistive Wall Mode in DIII–D and JET

by

H. Reimerdes[†],

In collaboration with M. Bigi[&], K.H. Burrell, M.S. Chu, A.M. Garofalo[†], M.P. Gryaznevich[&], T.C. Hender[&], D.F. Howell[&], G.L. Jackson, R.J. La Haye, G.A. Navratil[†], M. Okabayashi^{*}, S.D. Pinches[#], J.T. Scoville, and E.J. Strait

> [†]Columbia University [&]EURATOM/UKAEA Fusion Association, ^{*}Princeton Plasma Physics Laboratory [#]Max-Planck-Institut für Plasmaphysik

31st European Conference on Plasma Physics and Controlled Fusion

NERAL ATOMICS

June 28–July 2, 2004

7/37

- Advanced tokamak operation with wall stabilization of the external kink mode
 - Dispersion relation of the resistive wall mode (RWM) and modifications due to plasma rotation
- Extend technique of active MHD spectroscopy to very low frequencies
 - Resonant field amplification (RFA)
- Frequency dependence of n=1 RFA in DIII-D
 - Description of RFA spectrum by a single mode approach
 - Measurement of the RWM growth rate and mode rotation frequency
- Frequency dependence of n=1 RFA in JET
- Application of active MHD spectroscopy
 - Test of sound wave dissipation model
 - Comparison of co- and counter NBI discharge
- Summary

Operation in the wall stabilized regime with $\beta_N \sim 61i$ and β_T reaching 6%

• Beta exceeds estimated no-wall limit for >1s.

• Broad current profiles can greatly benefit from wall stabilization.

Stabilization of Resistive Wall Mode (RWM)

• Resistive Wall mode (RWM):

In the presence of a resistive wall, the free-boundary ideal MHD kink mode becomes a slowly growing RWM

- Observed between no-wall and ideal wall ideal MHD limit.
- "Slow" RWM growth γ_{RWM} ~ τ_w⁻¹
 → Stabilization by feedback control.
- "Slow" mode rotation $\omega_{\rm RWM} << \Omega_{\rm rot}$
 - → Quasi-static magnetic perturbation in a fast (toroidal) plasma flow.

Plasma flow and some dissipation alters linear stability [Bondeson and Ward, *Phys Rev Lett* **72** (1994) 2709].

Direct measurement of the RWM dispersion relation through active MHD spectroscopy

Active MHD spectroscopy

Drive a low amplitude perturbation at various frequencies using external antennas and extract the plasma response with synchronous detection.

Example: Analysis of Alfvén eigenmodes in JET [Fasoli et al, *Phys Rev Lett* 74 (1995) 645] - $\omega_{ext}/2\pi > 10^4$ Hz

• Apply on Resistive Wall Mode (where $\omega_{\text{RWM}} \sim 0)$

Understand interaction between external field and RWM (also important for feedback control), now for

- $\omega_{ext}/2\pi < 100$ Hz, i.e. $\omega_{ext} \sim \tau_w^{-1}$, where τ_w is the characteristic decay time of wall eddy currents.
- Resonant field amplification (RFA):
 External fields excite a marginally stable mode [Boozer, Phys Rev Lett 86 (2001) 1176].
- Dynamic response to externally applied resonant field pulses has been used to measure the RWM stability [Garofalo et al, *Phys Plasmas* **10** (2003) 4776].

DIII-D has versatile sets of antennas and detectors

Antenna:

- 12 internal saddle coils (I-coils).
- Phase coil currents to generate a rotating magnetic field with a large overlap with the RWM structure at the wall.

Detector:

- Toroidal arrays of saddle loops (and poloidal field probes) above, on and below the midplane.
- Frequency dependent vacuum coupling to I-coil is measured.

Rotating magnetic field applied to probe wall-stabilized DIII-D plasmas

 Apply a rotating low amplitude n=1 field:

$$I_c(t) = I_c e^{i\omega_{ext}t}$$

- ⇒ Plasma response increases significantly when beta exceeds the no-wall limit.
- Measure plasma response at different frequencies in multiple identical discharges.

Plasma response peaks for an externally applied field rotating in the direction of the plasma rotation

- Largest plasma response for $\omega_{ext}/2\pi \sim 10$ to 15 Hz, corresponding to $\omega_{ext} \sim 15$ to 25% of inverse wall time).
- Amplitude of plasma response increases with β.

Single mode model describes the interaction between the RWM and an externally applied field

 Single mode RWM model in slab geometry [Garofalo, Jensen, Strait, *Phys Plasmas* 9 (2002) 4573] yields relation between the perturbed radial field at the wall, B_s, and currents in the control coils, I_{ext},

$$\tau_w \frac{dB_s}{dt} - \gamma_0 \tau_w B_s = M_{sc}^* I_{ext}$$

- This expression holds for general toroidal geometry [Chu et al, *Nucl Fusion* 43 (2003) 196] and is independent of the details of the dispersion relation.
- Dispersion relations predict (complex) RWM growth rate, $\gamma_0 = \gamma_{RWM} + i \omega_{RWM}$, in the absence of external currents, e.g.:
 - Ideal MHD with rotation and dissipation: $\gamma_0 \tau_w$ from MARS calculations with various dissipation models [Liu, et al, *Phys. Plasmas* 7 (2000) 3681].

Single mode model predicts frequency dependence of the plasma response

• Distinguish between externally applied field and plasma response,

$$B_s = B_s^{plas} + B_s^{ext}$$

• Predicted plasma response to an externally applied field rotating with ω_{ext} :

$$B_{s}^{plas}(t) = \frac{\gamma_{0}\tau_{w} + 1}{(i\omega_{ext}\tau_{w} - \gamma_{0}\tau_{w})(i\omega_{ext}\tau_{w} + 1)} M_{sc}^{*}I_{c}e^{i\omega_{ext}t}$$

 Here, M^{*}_{sc} is the effective mutual inductance describing the resonant component of the perturbed field at the wall due to coil currents I_c.

Measured spectrum consistent with predictions of a marginally stable RWM in a rotating plasma

• Predicted frequency dependence of the plasma response,

$$B_{s}^{plas}(t) = \frac{\gamma_{0}\tau_{w} + 1}{(i\omega_{ext}\tau_{w} - \gamma_{0}\tau_{w})(i\omega_{ext}\tau_{w} + 1)} M_{sc}^{*}I_{c}e^{i\omega_{ext}t}.$$

- Fit γ_0 and M_{sc}^* to match measurements.
- Good agreement:
 - Indicates that a single-mode approach is applicable.
 - Yields measurement of the damping rate and mode rotation frequency:

 γ_0 = (-157 + i80)s⁻¹ for β_N = 2.4

 $\gamma_0 = (-111 + i73)s^{-1}$ for $\beta_N = 2.9$

Measurement of the RFA spectrum on JET using the error field correction coils

Antenna:

 One pair of the error field correction coils located in the midplane ⇒ apply n=1 pulses or standing waves.

Detectors:

• Two pairs of external odd-n *B*_r loops located at the **anti-node** and **node** of standing wave.

EUROPEAN FUSION DEVELOPMENT AGREEMENT

Standing wave applied to probe wall-stabilized JET plasmas

DEVELOPMENT AGREEMENT

EUROPEAN

FUSION

- Exceed the no-wall beta limit
 - $B_{T} = 1.4T$
 - $-I_{P} = 1MA$
 - $-P_{NBI} \le 20MW$
 - $P_{ICRH} \le 5MW$
- Apply an n=1 standing wave

$$I_{c}(t) = \frac{1}{2}I_{c} e^{i\omega_{\text{ext}}t} + \frac{1}{2}I_{c} e^{-i\omega_{\text{ext}}t}$$

Odd-n B_r at the node shows a plasma response.

Frequency dependence of plasma response in JET consistent with the single mode prediction

- Large direct coupling to the anti-node sensor (30 times larger than B^{plas}_s) leads to a significant uncertainty of this measurement ⇒ use only data for 0 Hz.
- Measurements are consistent with the single mode approach:
 - Fit yields the damping rate and mode rotation frequency:

 $\gamma_0 =$ (-100+i35)s⁻¹ for $\beta_N =$ 3.4

• The values for $\gamma_0 \tau_w$ (with $\tau_w \sim 2.5$ ms in DIII-D versus $\tau_w \sim 5$ ms in JET) in both experiments are of similar magnitude,

 $\gamma_0\tau_w\sim$ -0.4 + i 0.2 .

MHD spectroscopy yields a continuous potentially real-time - measurement of global n=1 stability

 With M^{*}_{sc} known from the fit of the entire spectrum the measurement of B^{plas}_s at a single frequency yields

$$\gamma_0 = \frac{i\omega_{ext}A_{RFA,s} / c_s - 1/\tau_w}{A_{RFA,s} / c_s + 1}$$

with
$$A_{\text{RFA},s} = B_s^{\text{plas}} / B_s^{\text{ext}}$$

and $C_s = M_{sc}^* / M_{sc}$

• Apply a low amplitude perturbation (300-700 A corresponding to 3-7 G at the antenna).

Measurement of RWM stability quantitatively tests dissipation models (MARS)

- First comparison with MARS code [Liu, et al, *Phys Plasmas* **7** (2000) 3681].
 - Generic equilibrium + DIII-D vessel + flat rotation profile + sound wave damping model.
- Observed damping rate is in good agreement with predictions
- Observed mode rotation frequency is an order of magnitude lower than predictions.
- ⇒Further theoretical and experimental work is needed.

MHD spectroscopy allows investigation of models for RWM stabilization

Preliminary result

• Smaller plasma response indicates stronger damping with co-injection.

Test predictions of dissipation mechanisms

- Soundwave damping [Bondeson and Ward]
- Kinetic damping [Bondeson and Chu]
- Neoclassical toroidal ripple viscosity [Shaing]
- Resonance with trapped particle precession [Hu and Betti]

Summary

- Interaction between externally applied resonant magnetic fields and the RWM in DIII-D and JET well described by a single marginally stable mode.
- RFA spectrum yields measurement of the RWM damping rate and mode rotation frequency.
 - Extension of "Active MHD Spectroscopy" to very low frequencies.
 - Rotating fields can provides a continuous, potentially real-time, measurement of RWM stability.
- Stability measurement allows for direct comparison with models of RWM stabilization by plasma rotation.
 - Comparison with soundwave-damping model shows qualitative agreement for damping rate, but observed mode rotation frequency is an order of magnitude lower than predictions
 - Different damping observed in co- and counter NBI discharges allowing test of predictions of stabilization models.
 - \Rightarrow Further theoretical and experimental work is needed.