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Empirical Evidence Exists for a DependenceEmpirical Evidence Exists for a Dependence

of Pedestal of Pedestal Te Profile on  Profile on ne  ProfileProfile

Barriers in Te and ne are often found to overlap very well

Width of ne barrier forms an approximate lower limit for

width of Te barrier

ASDEX-U has reported e  is about two in the pedestal

J. Neuhauser,  et al., Plasma Phys. Control. Fusion 44, 855

(2002)

Purpose of this paper is to do a survey of LTe
, Lne

 and e  in

DIII-D tokamak

LTe 
= Te / Te,    Lne 

= ne / ne

e  = Lne
 / LTe
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Profiles where Te and nne look similar

Measurements are

along Thomson

laser chord, shown

in inset
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Profile where Te barrier extends further into

core than ne barrier

Inner edge of barriers

is taken as the “knee”

of each profile

χ
e
 ~ 1/(ne∇Te) (au)
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Width of Te barrier is ~1-2 x width  of ne barrier

Inner edge of

barrier is

“knee” of the

each profile

Outer edge of

each barrier

is “foot” of Te

profile
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Most probable Te width is ~1.1-1.2 x ne width

Data set covers a

wide range of

densities

ELMs are removed

Figure is a PDF of

number of

occurrences of

various ratios of Te to

ne width

Widths are defined as

in previous figure
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Theoretical Motivation for Studying e

Gyrokinetic simulations have been used to develop an analytic

formula for critical Te gradient at linear threshold for Electron

Temperature Gradient (ETG) turbulence

F. Jenko, et al., Phys. Plasmas 8, 4096 (2001).

R LTe( )crit
= max 0.8R Ln , F( , ˆ s , q, , d d )[ ]

In the core, prediction is that LTe
 will not deviate far from the

linear threshold

For sufficiently steep ne profile, prediction is LTe
  Lne

Or, e  = Lne
 / LTe

  1

However, in steep gradient region of edge, theory says that the

Te gradient might deviate from value at linear threshold

Thus, we might expect e   1 at edge
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Theory Motivates 3 Questions for Experiment

In the region of steep density gradient, is there a linear

relation between LTe
 and Lne

?

If so, what is the e  , the ratio of Lne
 to LTe

?

What is e  throughout the region of steep density

gradient?
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Analysis Technique

Obtain modified hyperbolic tangent fits to edge Te and

ne profiles

- Use these to evaluate Lne
, LTe

 and e

For a general survey, evaluate these quantities at the

point of steepest density gradient

We might expect the effects of ETG turbulence to

show up first at that location

Evaluate data during ELM-free phases of several

discharges

- Avoid potential complications due to ELMs

Nota Bene: All measurements are in elevation along

Thomson laser chord; no projections to midplane
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Picture of analysis technique
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Circles are data;

solid lines are fits

to data

Region of steep

density gradient

is between knee

and foot of the

profile

Steepest gradient

is at symmetry

point

Coordinates are

along Thomson

chord
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Typical Waveform Showing Temporal

Evolution of Lne
, LTe

 and e
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e  Asymptotes to ~ 1 at Large P

Data are for a

fixed

discharge

shape

Cover a wide

range of

density,

current and

field

Include two

directions of

ion B drift
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LTe
 is Roughly linearly related to Lne

Data from ELM-

free phases of

discharges with a

range of shapes

50 ms moving

boxcar average

has been applied

to data
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e  is in range of ~ 1-3

Data are from survey

shown in previous

figure

For a given

discharge, e  is

approximately

constant as Pe varies

Two discharges with

highest e  were high

performance

discharges in high ,

double null shape
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e Is In Range of 1-3 Throughout Pedestal

A VH-mode

discharge

Dashed vertical

lines show knee

and foot of density

profile at different

times

e is computed

locally across the

profiles from

hyperbolic tangent

fit
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Summary

Several  empirical observations suggest that

shapes of Te and ne profiles are related in H-

mode barrier

ETG theory has been used to design a survey of

DIII-D data

The results show evidence of:

Linear relationship between LTe
 and Lne

 at

steepest part of density gradient

e  is in range of ~1-3 at that location

e  is in range of ~1-3 throughout density

pedestal
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Conclusions

These data could be evidence that density

profile has a strong effect on electron thermal

transport

ETG turbulence is a candidate for a mechanism

that would have this feature

Further studies await a model for ETG

transport which is valid for pedestal conditions

Must explain the observed range of e


