$\begin{array}{c} Empirical \ Study \ of \ \eta_e \ in \ H-mode \\ Pedestal \ in \ DIII-D \end{array} \end{array}$

R.J. Groebner¹, T.H. Osborne¹, M.E. Fenstermacher², A.W. Leonard¹, M.A. Mahdavi¹, P.B. Snyder¹, D.M. Thomas¹

2004 EPS Meeting, London June 28 - July 2, 2004

¹General Atomics ²Lawrence Livermore National National Laboratory

Empirical Motivation

Empirical Evidence Exists for a Dependence of Pedestal T_e Profile on n_e Profile

- Barriers in T_e and n_e are often found to overlap very well
- Width of n_e barrier forms an approximate lower limit for width of T_e barrier
- ASDEX-U has reported η_e is about two in the pedestal
 - J. Neuhauser, *et al.*, Plasma Phys. Control. Fusion **44**, 855 (2002)
- Purpose of this paper is to do a survey of L_{Te}, L_{ne} and η_e in DIII-D tokamak

o
$$L_{T_e} = T_e / \nabla T_e$$
, $L_{n_e} = n_e / \nabla n_e$
o $\eta_e = L_{n_e} / L_{T_e}$

Profiles where T_e and n_e look similar

Profile where T_e barrier extends further into core than n_e barrier

5

Width of T_e barrier is ~1-2 x width of n_e barrier

Most probable T_e width is ~1.1-1.2 x n_e width

Theoretical Motivation

Theoretical Motivation for Studying η_e

- Gyrokinetic simulations have been used to develop an analytic formula for critical T_e gradient at linear threshold for Electron Temperature Gradient (ETG) turbulence
 - F. Jenko, et al., Phys. Plasmas 8, 4096 (2001).

$$(R/L_{T_e})_{crit} = \max \left[0.8R/L_n, F(\tau, \hat{s}, q, \varepsilon, d\kappa/d\varepsilon)\right]$$

- In the core, prediction is that $L_{T_{e}}$ will not deviate far from the linear threshold
 - For sufficiently steep n_e profile, prediction is $L_{T_e} \approx L_{n_e}$

• Or,
$$\eta_e = L_{n_e} / L_{T_e} \approx 1$$

- However, in steep gradient region of edge, theory says that the T_e gradient might deviate from value at linear threshold
- Thus, we might expect $\eta_e \ge 1$ at edge

Theory Motivates 3 Questions for Experiment

- In the region of steep density gradient, is there a linear relation between L_{Te} and L_{ne}?
- If so, what is the η_e , the ratio of L_{n_e} to L_{T_e} ?
- What is η_e throughout the region of steep density gradient?

Analysis Procedure

Analysis Technique

- Obtain modified hyperbolic tangent fits to edge T_e and n_e profiles
 - o Use these to evaluate L_{n_e} , L_{T_e} and η_e
- For a general survey, evaluate these quantities at the point of steepest density gradient
 - We might expect the effects of ETG turbulence to show up first at that location
- Evaluate data during ELM-free phases of several discharges
 - **o** Avoid potential complications due to ELMs
- Nota Bene: All measurements are in elevation along Thomson laser chord; no projections to midplane

DEFINITION of MODIFIED TANHFIT

Picture of analysis technique

- Circles are data; solid lines are fits to data
- Region of steep density gradient is between knee and foot of the profile
- Steepest gradient is at symmetry point
- Coordinates are along Thomson chord

Results

Typical Waveform Showing Temporal Evolution of L_{n_e}, L_{T_e} and η_e

 η_e Asymptotes to ~ 1 at Large ∇P

L_{T_e} is Roughly linearly related to L_{n_e}

- Data from ELMfree phases of discharges with a range of shapes
- 50 ms moving boxcar average has been applied to data

η_e is in range of ~ 1-3

- Data are from survey shown in previous figure
- For a given discharge, η_e is approximately constant as ∇P_e varies ^Φ
- Two discharges with highest η_e were high performance discharges in high δ, double null shape

η_e Is In Range of 1-3 Throughout Pedestal

- A VH-mode discharge
- Dashed vertical lines show knee and foot of density profile at different times
- η_e is computed
 locally across the
 profiles from
 hyperbolic tangent
 fit

Summary/Conclusions

- Several empirical observations suggest that shapes of T_e and n_e profiles are related in Hmode barrier
- ETG theory has been used to design a survey of DIII-D data
- The results show evidence of:
 - Linear relationship between L_{T_e} and L_{n_e} at steepest part of density gradient
 - o η_e is in range of ~1-3 at that location
 - η_e is in range of ~1-3 throughout density pedestal

- These data could be evidence that density profile has a strong effect on electron thermal transport
- ETG turbulence is a candidate for a mechanism that would have this feature
- Further studies await a model for ETG transport which is valid for pedestal conditions
 - o Must explain the observed range of η_e

