Investigation of main-chamber and divertor recycling in DIII-D using tangentially viewing CID cameras

M. Groth,^a T.W. Petrie,^b G.D. Porter,^a M.E. Fenstermacher,^a N.H. Brooks^b

^a Lawrence Livermore National Laboratory, Livermore, CA 94550, USA ^b General Atomics, San Diego, CA 92186, USA

Presented at the 30th EPS Conference on Controlled Fusion and Plasma Physics, July 7-11, 2003, St Petersburg, Russia

Objective: How significant is main-chamber recycling to core plasma fueling and impurity content?

- Undesired impurity source "main chamber"
- Alcator C-Mod [1] and experiments in DIII-D reported significant contribution of main-chamber recycling (MCR) to core plasma fueling and impurity content
 - » Under which plasma conditions is main-chamber recycling significant?
 - » Toroidal and poloidal distribution of wall fluxes?
- Spatially limited diagnostic coverage of mainchamber wall in DIIID, view outer wall SOL at / around tokamak midplane
- Introduction of tangentially viewing midplane camera to better benchmark numerical models
- \Rightarrow Use codes to evaluate significance of MCR

Assess recycling using tangentially viewing CID cameras (upper and lower divertor + inner SOL)

Viewing geometry I: Tangent at inner wall ~ 45° toroidally, 0.75m above and below midplane

Viewing geometry II: Outer wall coverage ~ 60°, ~ R-1 \rightarrow R+1 ports at plane of tangency

R-1 0° ICRF 30° Antenna **NBI** duct

Standard camera

CID camera through image guide

Image data from CID cameras, poloidal emission profiles using tomographic reconstruction [2,3]

- Imager = radiation hardened charge-injected device (CID) camera, 8bit dynamic range
- DEP GEN II intensifier
 - » Adjustable gain, max. ~ 10000, gating down to microseconds
- Measurement of line emission profiles using interference filters

- Midplane camera latest addition to TTV system (2002):
 - » Intensified CID camera
 - » SCHOTT glass fiber image guide (400x400 pixel elements) connecting port optics with filter/ camera assembly
 - » Field-of-view: 1m x 1.5m of the inner SOL, outer SOL 1m x 0.8m optional
 - » Reconstruction of 2D profiles using Abel inversion and tomographic reconstruction technique

Main-chamber recycling (MCR) in low-density L-mode plasmas (SAPP)

- Simple-As-Possible-Plasmas (SAPP) [4] = quiescent L-mode plasmas, i.e no ELMs
- Lower single null configuration; optimized for diagnosis of outer divertor leg
 - » Inner strike point on the center post
 - » Sweep outer strike point for profile data
 - » Inner gap 13cm
- Repeat of identical discharges for diagnostic purposes
- Low core density: n/n_{GW} ~0.2, low beam heating power ~0.5MW, quiescent - no core MHD mode
- Well-attached outer leg divertor plasma,
 T_{e, plate} ~ 25-30eV

Slow sweep of outer strike point for divertor density and temperature measurement

- Slow sweep of outer strike point to scan divertor plasma over Divertor Thompson scattering view cords \rightarrow 2D n_{e,div} and T_{e,div},
- LPs: density and temperature profiles at target plates
- Inner strike point fixed, but inner gap slightly increasing
- As plasma swept over PMT array line-of-sights, outer D_{α} (and CIII) increase; inner fixed
- → Combination of data over sweep to obtain emission profile with better radial resolution

Asymmetric D_{α} and CII divertor emission profiles, partially detached inner divertor plasma

- Extended D_{α} emission profile along inner divertor leg, emission twice as high at inner strike zone as compared to outer strike zone
- CII emission highly localized at inner and outer strike zones, ~three times higher at the outer than at the inner strike zone

Max. D_{α} emission inside core plasma near x-point \rightarrow divertor is powerful fueling source

- Tomographic reconstruction performed for entire image, negligible emission from outer wall
- D_{α} emission dominant in region adjacent to lower x-point, decays poloidally toward midplane: tenfold within 0.5m poloidally

Poloidally asymmetric CII and CIII midplane profiles, strongly weighted toward lower divertor

- CII and CIII emission found in SOL only (T_e<10eV), CIII emission more poloidally extended, closer to separatrix
- Ratio of peak divertor to midplane emission: 10³ 10⁴
- Various routes for carbon to enter camera view conceivable, higher degree of poloidal symmetry expected if main walls were the primary source

UEDGE modeling: SOL, diffusive radial transport, carbon from divertor plates and walls

- UEDGE [5]: Classical parallel transport, w/drifts
- Diffusive radial transport, spatially constant diffusivities, obtained by matching exp. SOL n_e and T_e profiles:
 - » $D_{\perp} = 0.2m^2/s, \chi_e = \chi_i = 0.8m^2/s$
- Carbon origin:
 - » Physical and chemical sputtering at plates using published data [6,7]
 - » Chemical sputtering at outer boundary
 - » No recycling of carbon
- Carbon transport:
 - » Force balance model for carbon impurities in parallel B-field direction [8]:

$$F_Z = -\frac{1}{n_Z}\frac{dp_Z}{ds} + m_Z\frac{(v_i - v_Z)}{\tau_S} + ZeE + \alpha_e\frac{d(kT_e)}{ds} + \beta_i\frac{d(kT_i)}{ds}$$

UEDGE captures most of emission profile features \rightarrow significant D_a emiss. around x-point

- CII / CIII emission outside separatrix only, CIII emission well off inner plate → partially detached inner divertor plasma
- CIII more poloidally symmetric than CII \rightarrow consistent with experimental data
- Reduced emission in view of midplane camera by 10³ to 10⁴ (consistent w/exp.)

Dominant fueling source from x-point region calculated by UEDGE

- Integrate D⁰ fluxes into core around x-point (shaded area) and mainchamber region
- Ratio of D⁰ influxes from x-point region to main chamber ~200
- ⇒ Low-density L-mode
 plasma very likely to be
 dominated by x-point
 fueling

Transfer of chemically sputtered carbon from divertor walls to target plates

- P-C sputtered material from target plates mostly redeposited onto plates
- Neutral carbon away from plates arises from chemical sputtering at divertor walls (where n_0 is high)
- Divertor wall source localized within 50 cm away from plate

Main SOL (and core) carbon combination of sputtering and complex ion transport

- Carbon from PF swept to inner plate by E×B associated with large E_r near separatrix
- Circulation of carbon around strike zones: sputtering and redeposition
- Chemical sputtering at divertor walls up to 0.5m above the plate
- ⇒ (Net)transfer of carbon from divertor walls to target plates
- Above Z>-0.8m, ion temp. gradient force exceeds friction with background ions
- ⇒ Carbon ions transported upstream along inner main SOL

MCR in low and medium density ELMy H-mode in balanced and unbalanced double-null config.

- ELMy H-mode:
 - » $H_{89} \sim [1.8, 2.2]$
 - » $I_P=1.3MA$, $B_T=2.0T$
 - » P_{NBI} =5.5MW
- Vary magnetic balance for effect of divertor geometry (dRsep=0,±4cm)
- Vary B_T direction for effect of Bx∇B and ExB drifts
- $n/n_{GW} \sim [0.4, 0.6]$, wellmatched $n_{e,ped}$
- ⇒ T_{e,ped} varies significantly with configuration (up to 40%)

Similar $n_{e,ped}$, but variations in $T_{e,ped}$ for otherwise similar plasmas in USN, DN and LSN

- H₈₉ ~ 1.8-2.2
- Reduced <n_e> due to core MHD
- n/n_{GW} ~ 0.42
- T_{e,ped} [USN] > T_{e,ped} [DN] > T_{e,ped} [LSN]
- ELM amplitude larger in the upper divertor in USN than in lower divertor in LSN

Poloidally asymmetric D_{α} emission profile, weighted toward primary divertor(s)

- In USN: D_α peaks at inner strike zone in upper div. (consistent with ExB drift), in lower divertor maps "extended" div. legs
- Difference in emission between the two divertors: ~ two orders of magnitude
- In LSN and DN, D_{α} dominant at outer strike points in upper and lower divertor

CII and CIII profiles also weighted toward divertor(s), CIII more extended

- CII emission peaks at outer strike zones in USN, DN, LSN, in lower divertor CII maps "extended" div. legs
- CIII emission in LSN indicated partially detached lower divertor, while in USN plasma remained attached to upper target plates

Assessment of outer wall reflection using numerical and experimental tools in progress

- With increasing P_{NBI} and density, reflection and/or local recycling outer wall complicate analysis
- Areas affecting all three wavelengths
 - » ADP baffle (A) adjacent to lower x-point region
 - » ICRF antenna guard limiter (B) above midplane
 - Outer wall region, where view becomes more tangent with outer SOL (C)
 - Intensity of reflection varies with power, density and magnetic configuration
- Area also affecting CII/CIII profiles,
 - » Neutral beam duct guard limiter (D)

Summary and Conclusions

- New spectroscopic analysis of SOL assessed main-chamber recycling in L-mode at n/n_{GW}~0.2, and in ELMy H-mode at n/n_{GW}~0.4 and 0.6
- Experimental results:
 - » Poloidally asymmetric D_{α} , CII, and CIII emission profiles in the inner SOL, weighted toward primary divertor(s)
 - » D_{α} emission inside LCFS at x-point region indicates strong x-point source
- Modeling results using UEDGE consistent with experimental data
- ⇒ X-point fueling contributes two orders of magnitudes more to core plasma fueling than main walls!
- Carbon modeling with purely diffusive radial transport in UEDGE
 - » Chemically sputtered carbon from the divertor walls and private flux region is transferred to the target plates
 - » A fraction of carbon from divertor region reaches upstream SOL (and hence core) at high field side due to dominant ∇T_i force in region above x-point; consistent with experiment

References

- [1] LaBombard, B., *et al.*, Nucl. Fusion **40**, 2041 (2000)
- [2] Fenstermacher, M.E., et.al., Phys. Plasma 4, 1761 (1997)
- [3] Groth, M., et al., Rev. Sci. Instrum. 74, 2064 (2003)
- [4] Stangeby, P.C., et al., J. Nucl. Mater. **313-316**, 883 (2003)
- [5] Rognlien, T.D., et al., J. Nucl. Mater. **196-198**, 347 (1992)
- [6] Davis, J.W., and Haasz, A.A., J. Nucl. Mater. **241-243**, 347 (1997)
- [7] Eckstein, W., et al., J. Nucl. Mater. 248, 1 (1997)
- [8] Neuhauser, J., et al., Nucl. Fusion 24, 39 (1984)