CHANGES IN PARTICLE PUMPING DUE TO VARIATION IN MAGNETIC BALANCE NEAR DOUBLE-NULL IN DIII–D

by
T.W. PETRIE, J.G. WATKINS, S.L. ALLEN, N.H. BROOKS,
M.E. FENSTERMACHER, J.R. FERRON, C.M. GREENFIELD, M. GROTH,
A.W. HYATT, T.C. LUCE, M.A. MAHDAVI, M.J. SCHAFFER, M.R. WADE,
W.P. WEST, and The DIII–D TEAM

JULY 2003
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
CHANGES IN PARTICLE PUMPING DUE TO VARIATION IN MAGNETIC BALANCE NEAR DOUBLE-NULL IN DIII–D

by

This is a preprint of a paper to be presented at the 30th European Physical Society Conference on Controlled Fusion and Plasma Physics, St Petersburg, Russia, July 7–11, 2003 and to be published in the Proceedings.

*Sandia National Laboratories, Albuquerque, New Mexico.
†Lawrence Livermore National Laboratory, Livermore, California.
‡Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Work supported by
the U.S. Department of Energy
under Contract Nos. DE-AC03-99ER54463,
DE-AC04-94AL85000, W-7405-ENG-48, and DE-AC05-00OR22725

GENERAL ATOMICS PROJECT 30033
JULY 2003
Changes in Particle Pumping Due to Variation in Magnetic Balance Near Double-Null in DIII–D

Abstract. We report on a recent experiment examining how changes in the divertor magnetic balance affect the rate that particles can be pumped at the divertor targets. We find that both the edge density of the core plasma and divertor recycling play important roles in properly interpreting this pumping result.

Previous studies on DIII-D have identified several important differences between double-null (DN) and single-null (SN) divertor operation. Small variations in the magnetic balance near-DN have large effects on both the power- and particle loadings at the divertor targets [1,2]. These most likely result from an interplay between the plasma geometry and ion particle drifts [3,4], e.g., “$B \times \nabla B$” and “$E \times B$” drifts [5,6]. Other studies have shown that changes in magnetic balance affect the core plasma [7] and where ELMs strike the vessel [8]. In this paper, we examine how variations in the magnetic balance impact the rate at which particles are removed from the core plasma via pumping.

Three examples of the poloidal cross-sections considered in this study are shown in Fig. 1: (a) unbalanced upper DN, (b) balanced DN, and (c) unbalanced lower DN. [For the sake of discussion, we refer to the shapes in Fig. 1(a,b,c) as “UDN”, “BDN” and “LDN”, respectively.] These plasmas exhibited type-1 ELMing [9] and high energy confinement, i.e., $\tau_E/\tau_{E89P} = (2.1–2.5)$, where τ_{E89P} is the 1989 L-mode energy confinement scaling [10]. Pumping was done from two poloidal locations. One pump was located inside the “dome” plenum and exhausted particles near the upper inner divertor target. The second pump was located under the “baffle” plenum and exhausted particles near the upper outer divertor target. The locations...
CHANGES IN PARTICLE PUMPING DUE TO VARIATION IN MAGNETIC BALANCE NEAR DOUBLE-NULL IN DIII–D

of the divertor legs were optimized to maximize the pumping rates. To quantify the divertor “magnetic balance,” we define the quantity dR_{sep} as $[R_L - R_U]$, where R_L is the radius of the lower divertor separatrix flux surface at the outer midplane and R_U is the radius of the upper divertor separatrix flux at the outer midplane.

The rates at which particles are exhausted by the dome pump (Γ_{DOME}) and by the baffle pump (Γ_{BAF}) depend differently on dR_{sep}. Figure 2 shows that the ratio $\Gamma_{DOME}/\Gamma_{BAF}$ decreased steadily as the plasma shape changed from an UDN to a LDN. The relative importance of Γ_{BAF} to Γ_{DOME} almost doubled as $dR_{sep} = (+1 \text{ cm} \rightarrow 0 \text{ cm})$, and quadrupled as $dR_{sep} = (+1 \text{ cm} \rightarrow -1 \text{ cm})$.

A simple particle balance is useful to understanding these results: $0 = \Gamma_{INJ} - \Gamma_{DOME} - \Gamma_{BAF} - \Gamma_{WALL} - \frac{dN_C}{dt}$, where $[\Gamma_{INJ}]$ is the neutral beam fueling rate, $[\frac{dN_C}{dt}]$ is the time rate of change in the net number of particles entering/leaving the plasma system, and $[\Gamma_{WALL}]$ is the net number of particles into (+) or out of (-) the graphite tiles protecting the walls. With fixed pedestal density $n_{e,PED}$, Fig. 3 shows that Γ_{DOME} was more sensitive than Γ_{BAF} to small changes in dR_{sep} near BDN. Moreover, the sum $[\Gamma_{DOME}+\Gamma_{BAF}]$ decreased by a third between UDN and BDN, implying a higher fraction of the particles had to be “pumped” by the graphite tiles to maintain constant $n_{e,PED}$. For $dR_{sep} \approx +1.2 \text{ cm}$, $[\Gamma_{DOME}+\Gamma_{BAF}] \approx \Gamma_{INJ}$, and we surmise that constant $n_{e,PED}$ is maintainable with little or no wall pumping. For $dR_{sep} = 0$, however, maintaining that same $n_{e,PED}$ is problematical, since this would require a steady Γ_{WALL} of $\approx 30-40\%$ of Γ_{INJ}; wall pumping typically evolves over time.

The sensitivity of Γ_{BAF} and Γ_{DOME} near BDN is understood in the following way. The number of particles that flow into the scrape-off layer (SOL) from the low-field side of the core plasma is much higher than the number of particles that flow into the SOL from the high-field side, this due mainly to the larger plasma surface area and steeper radial gradients in density on the low-field side [2]. About half of the particles that flow into the SOL on the low field side...
stream toward the upper outer divertor target, regardless of whether the shape is UDN or BDN. On the other hand, particles that flow into the SOL on the low field side have no direct route to upper inner divertor target in the BDN shape. Thus, changing the magnetic balance near the BDN should have a greater effect on Γ_{DOME} than on Γ_{BAF}.

Inherent to this discussion is that Γ_{DOME} than Γ_{BAF} are directly related to the number of particles striking the divertor targets. This is reasonable, if the neutrals at the divertor target can reach the pump entrance (and be subsequently pumped) without undergoing re-ionization, i.e., the mean free ionization pathlength of neutrals (λ) should be greater than the distance to the pump entrance. For the plasmas considered here, λ is several times the distance from the target to the entrance. Thus, some fraction of particles striking the divertor target will be directed into the plenum and be pumped, so that $(\Gamma_{\text{DOME}}, \Gamma_{\text{BAF}}) \propto I_{\text{SAT}}$, where I_{SAT} is the number of particles striking the divertor target near the plenum entrance [11].

Figure 4(a,b) shows a sizable dependence of Γ_{DOME} and Γ_{BAF} (normalized to Γ_{INJ}) on $n_{e,\text{PED}}$ for both UDN and BDN configurations. For $0 \leq dR_{\text{sep}} \leq +1.5$ cm, $(\Gamma_{\text{DOME}}, \Gamma_{\text{BAF}}) \propto [n_{e,\text{PED}}]^{(1.6-2.8)}$. (This strong dependence was the reason for tightly “windowing” on $n_{e,\text{PED}}$ in Fig. 3.) A simple “two-point” model [12] predicts a strong dependence, i.e., $\Gamma_{\text{BAF}} \propto I_{\text{SAT}} \propto [n_{U}]^{2} \propto [n_{e,\text{PED}}]^{2}$. Here, n_{U} is the “upstream” density along the separatrix and is assumed here to be firmly tied to $n_{e,\text{PED}}$. Extrapolating the curves in Fig. 4(a,b) to the $n_{e,\text{PED}}$ for which the pumps would exhaust 100% of Γ_{INJ}, we find that $n_{e,\text{PED}} \approx 0.42$ and $0.5 \times 10^{20} \text{ m}^{-3}$ for the UDN and BDN cases, respectively.

Figure 5 shows that both Γ_{DOME} and Γ_{BAF} were nearly proportional to the recycling occurring next to their respective pump entrances, i.e., $\propto [\Phi_{\text{REC}}]^{(1.0-1.1)}$, where the recycling Φ_{REC} is characterized by the intensity of the D_{α} light radiating from in front of the dome and baffle entrances, respectively. We might expect this, since $(\Gamma_{\text{DOME}}, \Gamma_{\text{BAF}})$ and Φ_{REC} are both proportional to I_{SAT} in the lower density regime under consideration.

This linear relationship between $[\Gamma_{\text{DOME}}, \Gamma_{\text{BAF}}]$ and Φ_{REC} suggests a useful connection between the poloidal distribution in recycling in unpumped discharges and $[\Gamma_{\text{DOME}}, \Gamma_{\text{BAF}}]$ in pumped discharges. Recycling data from (similarly-prepared) unpumped discharges [7] are compared with the $\Gamma_{\text{DOME}}/\Gamma_{\text{BAF}}$ data from this study. The polynomial fit to the ratio

\begin{align*}
\text{Fig. 4. } \Gamma_{\text{BAF}}/\Gamma_{\text{INJ}} & \text{ (open circles) and } \Gamma_{\text{DOME}}/\Gamma_{\text{INJ}} \text{ (closed circles) depend strongly on the pedestal density for both} \\
& \text{ (a) UDN: } dR_{\text{sep}} = (1.1-1.4) \text{ cm and (b) } \\
& \text{ BDN: } dR_{\text{sep}} = (-0.3 - 0.2) \text{ cm.}
\end{align*}
$\Gamma_{DOME}/\Gamma_{BAF}$ (solid curve) is plotted versus dRsep in Fig. 6, along with the ratio $\Phi_{REC-IN}/\Phi_{REC-OUT}$ (closed circles), where Φ_{REC-IN} and $\Phi_{REC-OUT}$ are the intensities of the recycling light at the upper inner and upper outer divertor targets for the unpumped shots, respectively. Figure 6 shows a similar dependence in dRsep for $\Gamma_{DOME}/\Gamma_{BAF}$ and $\Phi_{REC-IN}/\Phi_{REC-OUT}$.

While active pumping on the two upper divertor legs may perturb the “natural” particle flows in the SOL and divertors and thus the pumping behavior, preliminary analysis suggests that the processes that may be pushing particles toward the divertor targets in unpumped cases are still present to some degree when pumping is occurring. We expect that, since the fraction of particles that are pumped at a target to be small compared with the incoming particle flux, the incident ion fluxes at that target would not be strongly affected by the pumping, at least for the low density, high energy confinement plasmas considered in this paper.

Work supported by the U.S. Department of Energy under Contract Nos. DE-AC03-99ER54463, DE-AC04-94AL85000, W-7405-ENG-48, and DE-AC05-00OR22725.