Demonstration of the ITER Ignition Figure of Merit at q₉₅ > 4 in Stationary Plasmas in DIII-D

by M.R. Wade

Presented at 29th EPS Conference on Controlled Fusion and Plasma Physics Montreux, Switzerland

June 17-21, 2002

ITER BASELINE SCENARIO IS CONSTRAINED BY β LIMIT IMPOSED BY ONSET OF NEOCLASSICAL TEARING MODES (NTMs)

- NTM scalings limit $\beta_N \lesssim 2.0$ in ITER, 40% below ideal MHD limit
 - Low limit partially due to large seed islands produced by sawteeth
- $\beta_N < 2.0$ forces ITER design to low q_{95} (or high I_p) to achieve desired fusion gain

Fusion Gain
$$\propto \beta \tau \propto \frac{\beta_N}{q_{95}} \frac{H}{q_{95}}$$

- Several disadvantages associated with low q₉₅ (or high I_p) operation
 - Effect of disruptions increase with increasing Ip
 - ELMs are larger: $\Delta W_{ELM} \propto P_{ped} \propto I_p^2$
 - Peak divertor heat flux increases due to shorter connection lengths
 - Pulse length is reduced since resistive flux consumption $\propto l_p$

STATIONARY PLASMAS WITH $\beta_N H/q_{95}^2 \ge$ ITER DESIGN VALUE AND $q_{95} > 4$ HAVE BEEN DEMONSTRATED ON DIII-D

DISTINGUISHING FEATURES OF THESE DISCHARGES

- Stationary on the measured thermal, resistive, and wall equilibration time scales
 - $\tau_{dur} \sim 25 \tau_{E} \sim 2.5 \tau_{CR} \sim 20 \tau_{weq}$
- q₀ > 1.0, no sawteeth or other n=1 activity
 - Results from continuous m=3/n=2 tearing mode at half radius
 - Reduces susceptibility to m=2/n=1 NTM
- $\beta_N \sim \beta_N^{no-wall}$ achieved without NTM
- Transport significantly better than expected from q scaling projections

THESE STATIONARY DISCHARGES ARE OPTIMIZED AND MAINTAINED THROUGH FEEDBACK CONTROL OF β AND PLASMA DENSITY

PRESSURE PROFILE EQUILBRATES SOON AFTER L-H TRANSITION; CURRENT PROFILE EQUILIBRATES ON A CURRENT RELAXATION TIME SCALE ($\tau_{CR} \sim 2.0$ s)

PRESSURE PROFILE EQUILBRATES SOON AFTER L-H TRANSITION; CURRENT PROFILE EQUILIBRATES ON A CURRENT RELAXATION TIME SCALE ($\tau_{CR} \sim 2.0$ s)

PRESSURE PROFILE EQUILBRATES SOON AFTER L-H TRANSITION; CURRENT PROFILE EQUILIBRATES ON A CURRENT RELAXATION TIME SCALE ($\tau_{CR} \sim 2.0$ s)

CURRENT PROFILE IS FULLY RELAXED AND WALL PARTICLE INVENTORY IS EQUILIBRIATED AFTER 3.0 s

STEADY m = 3/n = 2 TEARING MODE IS PRESENT IN ALL DISCHARGES WITH SUSTAINED, HIGH PERFORMANCE

- Continuous mode starts in earnest at t = 3.0 s
- Identified as m=3/n=2 tearing mode
- Rotation frequency is near 20 kHz, placing mode near p = 0.5
- Mode amplitude is small (<5 G) and confinement is only modestly affected (<10%)
- No sawteeth or fishbones evident

ENERGY TRANSPORT COMPARABLE TO THAT OBTAINED IN LOW q95 REFERENCE SHOT

- χ_{eff} substantially lower than that expected by q scaling of transport

 - Global confinement scaling: $\chi_{eff} \propto q^{1.4}$ Nondimensional transport studies: $\chi_{eff} \propto q^2$

ENERGY TRANSPORT COMPARABLE TO THAT OBTAINED IN LOW q95 REFERENCE SHOT

- χ_{eff} substantially lower than that expected by q scaling of transport

 - Global confinement scaling: $\chi_{eff} \propto q^{1.4}$ Nondimensional transport studies: $\chi_{eff} \propto q^2$
- Shown: $\chi_{eff} \propto q$

ENERGY TRANSPORT COMPARABLE TO THAT OBTAINED IN LOW q95 REFERENCE SHOT

- χ_{eff} substantially lower than that expected by q scaling of transport

 - Global confinement scaling: $\chi_{eff} \propto q^{1.4}$ Nondimensional transport studies: $\chi_{eff} \propto q^2$
- Shown: $\chi_{eff} \propto q$

- GLF23 drift-wave model gives good agreement with measured profiles
- Model contains ITG, TEM, and ETG with effects of ExB

MODEST RANGE IN DENSITY DEMONSTRATED ($n_e/n_{gw} \sim 0.5$) WITHOUT SIGNIFICANT LOSS IN CONFINEMENT

Z_{eff}, ion collisionality near ITER design parameters

SAN DIEGO

189-02/bas

IMPROVED PERFORMANCE MAINTAINED AT $q_{95} < 4.0$

- Scan accomplished by B_T ramp down while maintaining β_p constant
- Trend projects to 50% higher $\beta_N H/q_{95}^2$ at $q_{95} = 3.0$ than fiducial

PRESENT OPERATIONAL LIMIT ON PERFORMANCE IS ONSET OF m = 2/n = 1 NTM

Requesting higher β early almost always results in NTM at ~ 3.0 s 104276 104204 3.5 β_N 3.0 Ē E 2.5 2.0 Ē 1.5 $\tilde{\beta}$ n = 1 rms (10 G) 1.0 0.5 0.0 q_{min} 2.5 2.0 1.5 1.0 0.5 2000 3000 4000 5000 6000 1000 Time (ms) NATIONAL FUSION FACILITY 189-02/bas SAN DIEGO

β CAN BE INCREASED TO NO-WALL β LIMIT AFTER \textbf{q}_0 REACHES 1 WITH NO SIGN OF CONFINEMENT DEGRADATION

RECENT EXPERIMENTS HAVE DEMONSTRATED CAPABILITY OF STABILIZING m = 2/n = 1 TEARING MODE VIA ECCD

SUMMARY

- Stationary discharges with $\beta_N H/q_{95}^2$ commensurate with the ITER design have been demonstrated on DII-D
 - $\beta_{N}H \sim 7 \text{ for } 35\tau_{E}$ $\beta_{N}H \sim 8.5 \text{ for } 4\tau_{E}$ $at q_{95} = 4.4 \text{ (duration limited by hardware constraints)}$
- Discharges are stationary on the thermal, resistive, and wall equilibrium time scales
- Improved performance results from improved stability and transport properties
 - χ_{eff} comparable to q₉₅ = 3.0 reference case, much lower than expected from q scaling of transport
 - Lack of sawteeth, fishbones allow access to higher β_{N}
- Limiting factor on performance is m = 2 / n = 1 NTM
 - $\beta_N \sim \beta_N^{\text{no-wall}}$ have been obtained without 2/1 NTM
 - Recent experiments indicate ECCD can be used to stabilize 2/1 NTM

