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Magnetohydrodynamic (MHD) stability theory can make predictions for tokamak
experiments on three levels. Historically, predictions of the scaling of stability limits with key
parameters has provided guidance for improving tokamak performance, as exemplified by the
Troyon scaling. More recently, with the advent of accurate equilibrium reconstructions
utilizing internal profile measurements, it became possible to successfully reproduce the
experimental stability limits of specific tokamak discharges. In the past few years, the
predictive capability of MHD stability has entered a new phase in which, not only can the
stability limits be predicted accurately, but also the predicted growth rates and mode
structures can be quantitatively tested against experimentally measured diagnostic
fluctuations such as electron cyclotron emission (ECE), soft X-ray (SXR), and Mirnov
signals [1]. This has led to an acceleration in both the scientific understanding of tokamak
plasmas and the performance of tokamak discharges. It is now possible to test the importance
of competing non-ideal effects in setting the stability limits. For fast-growing global, ideal-
like instabilities, linear theory can explain the dominant features of the observed growth and
fluctuation signals. Detailed comparisons between predicted resistive wall modes (RWMs)
with discharge behavior has resulted in the identification of a definite correlation between
observed rotation slowdown and wall stabilization [2]. Predictions of unstable edge localized
modes (ELMs) can also be compared with measured signals. For slower, resistive modes,
comparisons of the predictions with diagnostic measurements have enabled identification of
resistive interchange modes, classically destabilized tearing modes, and nonlinearly
destabilized neoclassical tearing modes.
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