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I.INTRODUCTION

Methods for detecting imminent disruptions and mitigating disruption effects using
massive injection of noble gases (He, Ne, or Ar) have been demonstrated on the DIII-D
tokamak [1]. A jet of high injected gas density (> 1024 m-3) and pressure (> 20 kPa)
penetrates the target plasma at the gas sound speed (~300-500 m/s) and increases the
atom/ion content of the plasma by a factor of > 50 in several milliseconds. UV line radiation
from the impurity species distributes the plasma energy uniformly on the first wall, reducing
the thermal load to the divertor by afactor of 10. Runaway €electrons are almost completely
eliminated by the large density of free and bound electrons supplied by the gas injection. The
small vertical plasma displacement before current quench and high ratio of current decay rate
to vertical growth rate result in a 75% reduction in peak halo current amplitude and attendant
forces.

1. DISRUPTION EFFECTS, DETECTION, AND MITIGATION

A vertical displacement event (VDE) disruption is characterized by an initial loss of
vertical position, followed by wall limiting, adrop in edge safety factor, and finally a plasma-
terminating thermal quench. A major disruption by contrast occurs when the plasma stored
energy is lost before any loss in plasma position. Both can apply a large thermal load to
plasma facing components (PFC’s), particularly near the divertor strikepoints or the limiting
point. Because motion into a limiting surface converts currents on closed field linesto current
on open (halo) field lines with high efficiency, a VDE tends to produce the largest halo
currents [2]. Finally, the large electric fields produced during a rapid current quench in the
very cold (typically Te< 30 eV in DIlI-D) post-thermal quench plasma can exceed the critical
field required to produce runaway electrons|[3].

High performance next-generation devices as well as power reactors will require reliable
and accurate disruption detection algorithms, coupled with a robust and effective mitigation
method. In DI11-D the imminent onset of avariety of disruptions can be detected by a variety
of physics-based recognition algorithms implemented in the DI11-D Plasma Control System
(PCS) [4], which can take corrective action or trigger the gas injection mitigation system in
response. Figure 1 illustrates the use of a vertical position threshold detector in identifying an
intentionally-induced VDE and triggering the mitigation system. Following disabling of
vertical control, the plasma moves downward and crosses the specified threshold vertical
position (+ 5 cm). The PCS generates asignal triggering injection of high pressure Ne, which
produces a radiative thermal quench ~4 ms after the trigger. Only 3%-5% of the total plasma
(thermal and magnetic) energy is conducted to the divertor surface in a mitigated disruption,
while typically 20%—-40% is delivered to the divertor in an unmitigated disruption. Peak
stress from halo currents is reduced by ~75% from the unmitigated value.

Other detection algorithms implemented in the PCS include a radiated power threshold
and a sophisticated neoclassical tearing mode (NTM) and locked mode detector.
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The detailed evolution of both core and halo plasmas can be simulated with significant
accuracy using the GA halo model [1] and plasma geometry evolution data reconstructed by
the JFIT code [6]. One key result of this model is that the peak poloidal halo current in a
VDE isreduced by increasing the post-thermal quench plasmaresistivity or by decreasing the
plasma velocity during the wall-limited phase of the VDE. These actions will produce a
higher halo safety factor during the current quench, and thus reduce the poloidal halo current
since the poloidal halo current is inversely proportional to the instantaneous halo safety
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VDE’s. The mitigated case corresponds to

injection of high-pressure Ne gas when the plasma has moved ~5 cm from its equilibrium
position. These simulations show that the unmitigated case is consistent with post-thermal
guench values of Te ~5.0+0.5 eV, Zgif =1.5, while the mitigated case is consistent with post-
thermal quench values of Te ~2.4+0.5 eV, Zgf=1.5 (and thus increased resistivity).

To explore the importance of prompt <
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space of plasma current Ip(t) versus vertical  vertical position at which gasinjection occurs.
position Zp(t). The line indicating the vertical position at the point of wall contact is crossed
at increasingly high values of plasma current with later times of gas injection. The results
support the model that the halo current is proportional to the plasma current at the time when
the plasma is both in wall contact and undergoing the current quench. The larger plasma
minor radius and thus halo safety factor at wall contact further serves to reduce the poloidal
component of the halo current.

Runaway electrons can be generated when the Iarge parallel electric field (E|) produced
by the high resistive loop voltage (typically V ~ 500-1000 V in DIII-D) in the post-
thermal quench plasma accelerates electrons to relativistic speeds. If Ejp Ecrit= mcv/e
o ng(thermal), the acceleration will exceed the collisional drag, allowing any seed relativistic
electrons to experience knock-on avalanche amplification to become a population of runaway
electrons. The collisional slowing-down rate v is proportional to the thermal electron density,
including both bound and unbound electrons. The amplification is O €5, where G=YreTco,
and yre 0 v( EyEgit — 1). Thus, asufficiently large total (bound+unbound) thermal electron
density will yield Ecrit> Ej| so that ygg <0, and there will be no runaway amplification.
Injection of massive impurity gas density nearly satisfies this constraint in DIII-D, and no
runaways are observed under mitigation.
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[11. EXTRAPOLATION OF
MITIGATION SCENARIOSTO
BURNING PLASMA DEVICES

KPRAD simulations show that given
sufficient penetration, an ITER-FEAT
plasma can be brought down to Te~1.5¢€V,
with Zgss~1.0 using an Ar jet at ~30 kPa (a
modest factor of 4-5 over the DIII-D value).
Results of halo model simulations of ITER-
FEAT disruption loads are summarized in
Fig. 6, showing that the stress resulting from
poloidal halo current alone in such a case is
reduced by more than 75% from the
unmitigated value (resulting from
TM°=20 eV, ZM° =1.0). A TPF of 2 was
assumed for the unmitigated case, while
unity was assumed for the mitigated case. A
similar reduction in TPF is consistently seen
in DIII-D mitigation by all species of
impurity gasinjection (see Fig. 4).

V. CONCLUSIONS

Most of the key processes of disruption
effects mitigation are now well-understood.
Models based on this understanding can be
confidently applied to mitigation scenarios
for next-generation devices, with certain
caveats. In particular, mechanisms governing
jet penetration in reactor-grade plasmas and
the physics of halo width and geometry
evolution remain to be well understood. High
pressure gas injection is nevertheless an
excellent candidate for simultaneous
mitigation of al damaging disruption effects,
with potential for high reliability at a

D.A. HUMPHREYS, et al.

0.0 T'rajec'torie§ in ;p-lp S'pace'durirllg VQE

02} dz=5cm

dZ=10-em
dz=15c¢

04| Wallcontact level

0.6

— -08}
10} Unmitigated

“121L
Vessel floor

-141

-16 ; ; L X ; ; N
02 00 02 04 06 08 10 1.2 14 16 18
1, (MA)

Fig. 5. Trajectoriesin Z-I, space for varying vertical
positions at which gas injection occurs. The fraction
of plasma current lost by the time of wall-impact is
greater the earlier the injection is performed.

ITER-FEAT Disruption Stress

1.6} "
Unmitigated
1.4+
1.2}
1.0t

0.8¢

Phan (MPa)

0.6

0.2¢

0.0

00 0.1 0.2 0.3 0.4 0.5 0.6
Time ()

Fig. 6. Smulations of mitigated and unmitigated

disruptions in ITER-FEAT show a dramatic potential

reduction in halo current stress with impurity gas

injection.

relatively low cost. Experiments using physics-based disruption detection algorithms in the
PCS to trigger the gas injection system in DIII-D demonstrate the effectiveness of this

integrated approach.
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