Progress Toward Sustained High-Performance Advanced Tokamak Discharges in DIII-D*

J.R. Ferron,¹ D.P. Brennen,² T.A. Casper,³ A.M. Garofalo,⁴ C.M. Greenfield,¹ A.W. Hyatt,¹ R. Jayakumar,³ L.C. Johnson,⁵ J.E. Kinsey,⁶ R.J. LaHaye,¹ L.L. Lao,¹ E.A. Lazarus,⁷ J. Lohr,¹ T.C. Luce,¹ M. Murakami,⁷ M. Okabayashi,⁵ C.C. Petty,¹ P.A. Politzer,¹ R. Prater,¹ E.J. Strait,¹ A.D. Turnbull,¹ J.G. Watkins,⁸ M.R. Wade,⁷ and W.P. West¹

¹General Atomics, P.O. Box 85608, San Diego, California 92186-5608 USA ²Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37831 USA ³Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 USA

⁴Columbia University, New York, New York 10027 USA

⁵Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543

⁶Lehigh University, Bethlehem, Pennsylvania 18015 USA

⁷Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA

⁸Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 USA

Key elements of a sustained advanced tokamak discharge in DIII-D are large fraction of the total current from bootstrap current (f_{BS}) and parameters that optimize the capability to use electron cyclotron current drive (ECCD) at $\rho \approx 0.5$ to maintain the desired current profile. Increased f_{BS} results from increasing both the normalized beta (β_N) and the minimum value of the safety factor (q_{min}). Off-axis ECCD is, for the available gyrotron power, optimized at high β_N , high T_e and low n_e . In DIII-D, discharges have been produced with many of these characteristics, $\beta_N \approx 4$, $H_{89} \approx 3$ (ratio of τ_E to L-mode scaling), and $q_{min} > 1.5$ with $\beta_N H_{89} > 10$ sustained for about 0.6 s ($\approx 5 \tau_E$). Here f_{BS} is about 65% and β_N reaches 6 ℓ_i , close to the predicted limit for the ideal n = 1 kink mode with an ideal wall at the DIII-D vessel. The ideal no-wall β_N limit is about 4 ℓ_i . Achievement of sustained β_N values well above the no-wall limit is aided by improved correction of intrinsic error fields, allowing toroidal plasma rotation above the level required to stabilize the n=1 resistive wall mode.

The achievable β_N in these discharges has been found empirically to depend on the edge safety factor, q_{95} . In the discharge shape designed to make use of divertor-region pumping, by increasing q_{95} from 4.0 to 4.8 (by increasing B_T at fixed I_p), reproducible β_N increased from 3.4 to 4. This observation contrasts with predictions from ideal MHD modeling from which a reduction in the β_N limit to the n=1 mode is predicted at higher q_{95} . The improved β_N values in the experiment appear to result primarily from improved ability to operate close to the ideal wall β_N limit.

The value of q_{\min} in the high β_N phase of the discharge is presently set by resistive relaxation of the current profile. This high performance phase is normally terminated by the onset of a tearing mode as q_{\min} decreases to about 1.5. Recently the ability to reach the high β_N phase with $q_{\min} > 2$ was demonstrated by inducing H–mode early in the plasma current ramp to increase T_e .

The goal is to maintain a stable high performance equilibrium by sustaining the current profile using ECCD. Modeling based on parameters from a discharge with $q_{\min} \approx 1.5$ has shown that this is possible using the available gyrotron power. The required elements for efficient off-axis ECCD have been separately demonstrated: density control at high β_N with $n_e \leq 5 \times 10^{19} \text{ m}^{-3}$ using divertor-region pumping, stability at high β , and ECCD at the theoretically predicted efficiency. Challenges remaining are to integrate these elements and to increase T_e to increase the driven current.

^{*}Work supported by U.S. Department of Energy under Contracts DE-AC03-99ER54463, W-7405-ENG-48, DE-AC02-76CH03073, DE-AC05-00OR22725, DE-AC04-94AL85000, and Grants DE-AC05-76OR00033, DE-FG02-89ER53297, and DE-FG02-92ER54141.