EFFECTS OF MAGNETIC GEOMETRY ON L-MODE AND H-MODE ENERGY **TRANSPORT***

T.C. Luce,¹ C.C. Petty,¹ J.E. Kinsey,² and R.E. Waltz¹

¹General Atomics, P.O. Box 85608, San Diego, California, 92186-5608, USA ²Lehigh University, Bethlehem, Pennsylvania, USA

The discharge geometry can influence energy confinement in a tokamak in several ways, even with fixed minor radius and aspect ratio. The first effect is the confinement increase from raising the volume - surface area ratio at fixed thermal conductivity. For a pure elongation (κ) scan, this effect scales like $\kappa/\sqrt{1+\kappa^2}$. The second effect is the increase in the effective minor radius of the plasma. For gyro-Bohm scaling (both neoclassical theory and electrostatic drift waves), this effect scales as κ^2 . Bohm-like scaling should only scale with κ . All of the above discussion assumes fixed safety factor (q). However, empirical scalings are typically evaluated at fixed current (I).¹ Since q varies as $\sqrt{1 + \kappa^2}$ and empirically $\chi \propto q^2$ plus a dependence on shear,² one expects an even more complex scaling in the case of fixed I.

These experiments seek to elucidate the roles of these varying effects during a change in κ . The DIII-D tokamak has a unique combination of shaping capability, high-power auxiliary heating, and transport diagnostics which allow experiments in L-mode and H-mode having κ variations in the range 1.17–2.0, spanning the range of burning plasma experiment designs. The scans are done at fixed normalized gyroradius, β , and collisionality. Holding these parameters constant is equivalent to fixed toroidal field, density, and temperature. To separate the effects of geometry and q, both constant I and constant q₉₅ scans are performed.

The table below gives the measured κ scaling, reported as the exponent of a power law fit. Also shown for reference are the κ scalings from the ITER physics basis.¹ For the case of the constant q H-mode scan, a good match was not obtained, since the reduced power needed to match the temperature drops below the L-H power threshold. The reported number is a lower limit. A smaller scan will be carried out in the near future.

From the data, the conclusion is that the influence of geometry is much greater in H-mode than L-mode. This is not too surprising since the geometry change is largest in the high confinement H-mode pedestal and empirical H-mode scalings are gyro-Bohm. The H-mode scalings also favor the *ad hoc* geometry corrections in the Multimode model³ over other general geometry calculations.⁴

	Constant I		Constant q	
	Exp.	ITER Database ¹	Exp.	ITER Database ¹
L-mode	0.34	0.64	1.32	3.22
H-mode	1.33	0.67 - 0.78	>3	2.3–2.72

¹ITER Physics Basis, Nucl. Fusion **39**, 2175 (1999).
²C.C. Petty, T.C. Luce, D.R. Baker, *et al.*, Phys. Plasmas **5**, 1695 (1998).
³J. Kinsey, C. Singer, D. Cox, G. Bateman, Physica Scripta **52**, 428 (1995).
⁴R.E. Waltz and R.L. Miller, Phys. Plasmas **6**, 4265 (1999).

^{*}Work supported by the U.S. Department of Energy under Contract DE-AC03-99ER54463, and Grants. DE-FG03-92ER54141 and DE-FG03-95ER54309.