EXPERIMENTAL GOALS AND METHOD

- **Goal:** Determine experimentally the influence of cross-section shape on energy transport in L mode and H mode

- **Method:** While changing the elongation, hold fixed:
 - Toroidal field at geometric center
 - Minor radius
 - Density profiles in normalized radius
 - Temperature profiles in normalized radius
 - Toroidal rotation profile in normalized radius

 and to compare with theory
 - \(q \) profile in normalized radius

 or to compare with global scalings
 - Plasma current

- **Note:** Since densities are large and no uncertainty analysis has been performed, only one-fluid power balance results are shown
FLUX-AVERAGED EQUATIONS GIVE SIMPLE FORMULAS FOR THE EFFECT OF CROSS SECTION CHANGES

- By definition:

\[q_H = -n\bar{\chi} \frac{\partial T}{\partial \rho_b} \frac{1}{\rho_b} \]

\[P = \frac{\partial V}{\partial \rho} \frac{\partial}{\partial p} q_H. \]

(\(\rho_b^2 \) is the boundary value of the normalized toroidal flux). The change in diffusivity when the cross section is varied with \(n(\hat{\rho}), T(\hat{\rho}) \) constant:

\[\frac{\bar{\chi}_2}{\bar{\chi}_1} = \frac{q_{H2}}{q_{H1}} \frac{\rho_{b2}}{\rho_{b1}} = \frac{(P_2/H_2)}{(P_1/H_1)} \]

where \(H = \frac{\partial V}{\partial \rho} (4\pi^2 R_o \hat{\rho} \rho_b) \).

- The change in global confinement can be estimated by

\[\tau = \rho_b^2 / \bar{\chi}. \]

Then

\[\frac{\tau_2}{\tau_1} = \left(\frac{\rho_{b2}}{\rho_{b1}} \right)^2 \frac{\bar{\chi}_1}{\bar{\chi}_2}. \]

If the diffusivity is independent of cross-section shape, then \(\tau \propto \rho_b^2 \sim \kappa \).
Shape variation for H–mode elongation scans

$\kappa = 2$
$\kappa = 1.7$

Shape variation for L–mode elongation scans

$\kappa = 1.8$
$\kappa = 1.2$
CONCLUSIONS

- Characterizing the cross-section shape effects using κ, and the effect on diffusivity as a power law $\chi \propto \kappa^a$, there is a strong influence of shape on transport: $\alpha = -(1.5–2.0)$

- Changes in cross-section shape at fixed current will be strongly affected by the change in q. It is necessary to maintain fixed q to isolate the effects of cross-section shape on energy transport.

- The constant current scans can be qualitatively reconciled with the constant q scans using $\chi \propto q^2$ as measured in DIII–D H–modes.

- No theoretical understanding of such a strong dependence on cross-section shape is available at this time.
Transport is reduced with increasing elongation

\[\chi \propto \kappa^\alpha \]

\(\chi \) ratio
\(\kappa \) ratio
PROFILE MATCH FOR CONSTANT I H–MODE SCAN

\[\kappa = 1.70 \]

\[\kappa = 2.02 \]
Transport increases with increasing elongation

\[\chi \propto \kappa^\alpha \]
H MODE GLOBAL CONFINEMENT RESULTS

<table>
<thead>
<tr>
<th></th>
<th>Constant q Scan</th>
<th>Constant I Scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_{th} (ms)</td>
<td>190/135</td>
<td>137/128</td>
</tr>
<tr>
<td></td>
<td>2.0/1.71</td>
<td>2.02/1.70</td>
</tr>
<tr>
<td>ρ_b^2 (m2)</td>
<td>0.63/0.517</td>
<td>0.604/0.513</td>
</tr>
<tr>
<td>H_{98Y2}</td>
<td>0.99/1.20</td>
<td>1.15/1.20</td>
</tr>
<tr>
<td>α</td>
<td>2.19</td>
<td>0.41</td>
</tr>
</tbody>
</table>

H_{98Y2} is the ratio of τ_{th} to the H–mode confinement scaling in the ITER Physics Basis

$(\tau_{th} \propto \kappa^\alpha)$

<table>
<thead>
<tr>
<th></th>
<th>Constant q Scan</th>
<th>Constant I Scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (MA)</td>
<td>1.08/0.84</td>
<td>0.84/0.84</td>
</tr>
<tr>
<td>B (T)</td>
<td>1.93/1.93</td>
<td>1.93/1.93</td>
</tr>
<tr>
<td>\bar{n} (10^{19} m$^{-3}$)</td>
<td>5.2/5.1</td>
<td>4.7/4.6</td>
</tr>
<tr>
<td>P (MW)</td>
<td>2.69/3.37</td>
<td>3.60/3.37</td>
</tr>
</tbody>
</table>
PROFILE MATCH FOR CONSTANT q L-MODE SCAN

\[\kappa = 1.17 \]

\[\kappa = 1.77 \]
Transport is reduced with increasing elongation.

\[\chi \propto \kappa^\alpha \]

\[\chi \text{ ratio} \quad \kappa \text{ ratio} \]

\[\hat{\rho} \]

\[\hat{\rho} \]
PROFILE MATCH FOR CONSTANT I L–MODE SCAN

\[\kappa = 1.17 \]

\[\kappa = 1.79 \]

\[n_e \left(10^{19} \text{ m}^{-3}\right) \]

\[T_e \text{ (keV)} \]

\[T_i \text{ (keV)} \]

\[\omega_T \text{ (rad/s)} \]

\[Z_{\text{eff}} \]

\[q \]

\[\hat{\rho} \]
Transport increases at higher elongation

\[\chi \propto \kappa^\alpha \]

- χ ratio
- κ ratio
L MODE GLOBAL CONFINEMENT RESULTS

<table>
<thead>
<tr>
<th></th>
<th>Constant q Scan</th>
<th>Constant I Scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_{th} (ms)</td>
<td>90.0/46.2</td>
<td>56.6/348.7</td>
</tr>
<tr>
<td></td>
<td>1.77/1.17</td>
<td>1.79/1.17</td>
</tr>
<tr>
<td>ρ_b^2 (m²)</td>
<td>0.73/0.46</td>
<td>0.684/0.462</td>
</tr>
<tr>
<td>L_{IPB}</td>
<td>0.69/1.12</td>
<td>1.23/1.18</td>
</tr>
<tr>
<td>α</td>
<td>1.61</td>
<td>0.35</td>
</tr>
</tbody>
</table>

L_{IPB} is the ratio of τ_{th} to the L–mode thermal confinement scaling in the ITER Physics Basis.

L_{IPB} is the ratio of τ_{th} to the L–mode thermal confinement scaling in the ITER Physics Basis.

$\tau_{th} \propto \kappa^{\alpha}$
DISCUSSION

- The discrepancy in the constant q and constant I scans is expected in H mode on the basis of the q scaling measurements on DIII–D ($\chi \propto q^2$) [1]. Such strong and opposing dependences will require a careful error assessment to yield an accurate estimate for the true scaling with shape.

- Preliminary analysis gives a power law dependence of $\alpha \simeq -(1-4)$ for all cases assuming $\chi \propto q^2$ (see figure at right).

- Such a strong dependence on shape was not anticipated by theoretical calculations (for example [2]). However, physics-based models derived for circular geometry [3] have included strong shaping effects ($\chi \propto \kappa^4$).

Main conclusion is that a reasonable q dependence ($\chi \propto q^2$) is in the correct direction and has sufficient magnitude to reconcile the constant q and constant I scans.

Measurement uncertainties may not allow a quantitative correction.