EXPERIMENTAL GOALS AND METHOD

- Goal: Determine experimentally the influence of crosssection shape on energy transport in L mode and H mode
- Method: While changing the elongation, hold fixed:
 - Toroidal field at geometric center
 - Minor radius
 - Density profiles in normalized radius
 - Temperature profiles in normalized radius
 - Toroidal rotation profile in normalized radius

and to compare with theory

– q profile in normalized radius

or to compare with global scalings

- Plasma current
- Note: Since densities are large and no uncertainty analysis has been performed, only one-fluid power balance results are shown

FLUX-AVERAGED EQUATIONS GIVE SIMPLE FORMULAS FOR THE EFFECT OF CROSS SECTION CHANGES

• By definition:

$$\overline{\mathbf{q}_{\mathsf{H}}} \equiv -\mathbf{n}\overline{\chi} \, \frac{\partial \mathbf{T}}{\partial \hat{\rho}} \, \frac{1}{\rho_{\mathsf{b}}} \qquad \qquad \mathbf{P} \equiv \frac{\partial \mathbf{V}}{\partial \rho} \, \overline{\mathbf{q}_{\mathsf{H}}} \quad .$$

 $(\rho_b^2$ is the boundary value of the normalized toroidal flux). The change in diffusivity when the cross section is varied with $n(\hat{\rho})$, $T(\hat{\rho})$ constant:

$$\frac{\overline{\chi}_2}{\overline{\chi}_1} = \frac{\overline{q}_{H2}}{\overline{q}_{H1}} \quad \frac{\rho_{b2}}{\rho_{b1}} = \frac{(P_2/H_2)}{(P_1/H_1)}$$

where H = $\partial V / \partial \rho$ (4 π^2 R_o $\hat{\rho}$ ρ_b).

• The change in global confinement can be estimated by $\tau = \rho_b^2 / \overline{\chi}$. Then

$$\frac{\tau_2}{\tau_1} = \left(\frac{\rho_{b2}}{\rho_{b1}}\right)^2 \frac{\bar{\chi}_1}{\bar{\chi}_2} \cdot$$

If the diffusivity is independent of cross-section shape, then $\tau \propto \rho_b^2 \sim \kappa$

- Characterizing the cross-section shape effects using κ, and the effect on diffusivity as a power law χ ∝ κ^a, there is a strong influence of shape on transport:
 α = -(1.5-2.0)
- Changes in cross-section shape at fixed current will be strongly affected by the change in q. It is necessary to maintain fixed q to isolate the effects of cross-section shape on energy transport
- The constant current scans can be qualitatively reconciled with the constant q scans using $\chi \propto q^2$ as measured in DIII–D H–modes
- No theoretical understanding of such a strong dependence on cross-section shape is available at this time

PROFILE MATCH FOR CONSTANT q H–MODE SCAN

NATIONAL FUSION FACILITY SAN DIEGO

• Transport is reduced with increasing elongation

PROFILE MATCH FOR CONSTANT I H-MODE SCAN

H MODE GLOBAL CONFINEMENT RESULTS

			_
	Constant q Scan	Constant I Scan	_
$ au_{ ext{th}}$ (ms)	190/135	137/128	
	2.0/1.71	2.02/1.70	
ρ <mark>2</mark> (m²)	0.63/0.517	0.604/0.513	
H _{98y2}	0.99/1.20	1.15/1.20	
α	2.19	0.41	$(\tau_{th} \propto \kappa^{\alpha})$
I (MA)	1.08/0.84	0.84/0.84	
B (T)	1.93/1.93	1.93/1.93	
īn (10 ¹⁹ m−3)	5.2/5.1	4.7/4.6	
P (MW)	2.69/3.37	3.60/3.37	

 H_{98Y2} is the ratio of τ_{th} to the H–mode confinement scaling in the ITER Physics Basis

POWER BALANCE ANALYSIS FOR CONSTANT I L-MODE SCAN

L MODE GLOBAL CONFINEMENT RESULTS

			-
	Constant q Scan	Constant I Scan	-
$ au_{ ext{th}}$ (ms)	90.0/46.2	56.6/348.7	
	1.77/1.17	1.79/1.17	
ρ <mark>2</mark> (m²)	0.73/0.46	0.684/0.462	
L _{IPB}	0.69/1.12	1.23/1.18	
α	1.61	0.35	$(\tau_{th} \propto \kappa^{\alpha})$
			-
I (MA)	1.84/0.98	0.99/0.97	
B (T)	1.99/1.99	2.00/1.99	
īn (10 ¹⁹ m−3)	4.4/4.2	4.5/4.2	
P (MW)	3.20/4.59	5.97/4.58	

LIPB is the ratio of τ_{th} to the L–mode thermal confinement scaling in the ITER Physics Basis

- The discrepancy in the constant q and constant I scans is expected in H mode on the basis of the q scaling measurements on DIII–D ($\chi \propto q^2$) [1]. Such strong and opposing dependences will require a careful error assessment to yield an accurate estimate for the true scaling with shape
- Preliminary anallysis gives a power law dependence of $\alpha \simeq -(1-4)$ for all cases assuming $\chi \propto q^2$ (see figure at right)
- Such a strong dependence on shape was not anticipated by theoretical calculations (for example [2]). However, physics-based models derived for circular geometry [3] have included strong shaping effects (χ ∝ κ⁴)

- [1] C.C. Petty, et al., Phys. Plasmas <u>5</u>, 1695 (1998).
- [2] R.E. Waltz, R.L. Miller, Phys. Plasmas <u>6</u>, 4265 (1999).
- [3] J.E. Kinsey, et al., Physica Scripta <u>53</u>, 428 (1995).

PRELIMINARY ASSESSMENT OF CORRECTION OF THE κ SCANS FOR q SCALING

SAN DIEGO

- Main conclusion is that a reasonable q dependence $(\chi \propto q^2)$ is in the correct direction and has sufficient magnitude to reconcile the constant q and constant I scans
- Measurement uncertainties may not allow a quantitative correction