
THE GOAL OF THE DIII–D ADVANCED TOKAMAK PROGRAM IS TO DEVELOP
THE BASIS FOR A STEADY-STATE, HIGH PERFOMANCE TOKAMAK

� Simultaneously require:

 — High fusion power density ⇒ High plasma pressure (high β)
 — High fusion gain   ⇒ Good energy confinement (high τE)

 

 

�  Gain and bootstrap current have conflicting scaling  

 — Fusion gain:   βτE ∝ (βN/q)  (H89 /qα)

      
 

 ⇒  Self-consistent scenarios require βN and  H89 above conventional tokamak values

  Definitions:  βN = β/(I/aB)      H89 = τE / τE,ITER89P
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— Non-inductive current    ⇒   High bootstrap fraction (high βP) 
     sustainment

 — Bootstrap current:   fBS ∝ βp ∝ q βN
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CHOSEN SCENARIO REPRESENTS COMPROMISE BETWEEN ATTAINABLE 
FUSION POWER DENSITY AND BOOTSTRAP CURRENT FRACTION 
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DIII–D STUDIES HAVE SHOWN THAT SIGNIFICANT GAIN IN STEADY-STATE 
CAPABILITY CAN BE OBTAINED WITH MODERATE COST IN FUSION GAIN
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HIGHER fBS WITH SIMILAR βτ IS ACHIEVED IN ADVANCED 
TOKAMAK SCENARIO AS A RESULT OF HIGHER βN H

Advanced mode (q95 = 5.5) Conventional mode (q95 = 3.1)
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ACHIEVED βN IS WELL ABOVE 
THE CALCULATED n=1 STABILITY LIMIT
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IMPROVED CONFINEMENT IS CONSISTENT WITH 
DRIFT-WAVE SIMULATION WITH ExB SHEAR

� GLF23 model* self-consistently calculates ne, Te, Ti, and vtor resulting from input

 source profiles and calculated turbulence driven by ITG, TEM, and ETG with effects of E×B shear
 

�    Model predictions are consistent with measured profiles 

*Waltz et al., Phys. Plasmas 5 1695 (1998)
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MODEL SUGGESTS THAT ExB SHEAR REDUCES BUT
DOES NOT ELIMINATE TURBULENT TRANSPORT

� Enhanced confinement due to suppressed turbulent transport across most 
 of the plasma radius

� Toroidal viscosity predicted by GLF23 model is approximately a factor of 2 lower 
 than the ion thermal diffusivity
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� Ohmic current at this time has penetrated to core. Replacing Ohmic Current at mid-radius 
 with localized ECCD earlier in evolution should help maintain favorable q profile

LARGE FRACTION OF CURRENT (fBS ~ 65% AND fNI ~ 80%) IS DRIVEN 
NON-INDUCTIVELY - REMAINING OHMIC CURRENT PEAKED OFF-AXIS
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UNFORTUNATELY, DENSITY INCREASES UNCONTROLLABLY 
IN THIS DISCHARGE, LIMITING EFFECTIVENESS OF 

ECCD -> DENSITY CONTROL IS REQUIRED

1800 ms
1600 ms
1400 ms

Experiment
ne = min (ne

exp, 4.5×1019); Te = Te
exp

ne = min (ne
exp, 4.5×1019); Te ∝ βe

exp/ne

S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY

� Density control using the new upper divertor has been demonstrated with slightly
 unbalanced DN plasma shape - necessary to obtain adequate particle flux to upper 
 divertor (DRSEP > 0.5 cm)
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� Primary difference is magnetic balance – DRSEP ~ 1 cm required to obtain adequate 
 particle flux to upper divertor

S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY 130-01/jy



4.5 5.0 5.5 6.0 6.5 7.0

S = (I/aB) q95

3.0

3.5

4.0

4.5
0.75 < li < 0.85 
βN > 4li

0.75 < li < 0.85 
βN > 4li

1999–2000

2001

M
ax

im
um

 β
N

1999–2000

2000

3.5 4.0 4.5 5.0 5.5 6.0
q95

3.0

3.5

4.0

4.5

M
ax

im
um

 β
N

S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY

� Increasing DRSEP causes a drop in the shape parameter S = (I/aB) q95 and q95 itself 

� 1999-2000 studies indicated variation of RWM β limit with shape parameter and q95

RECENT SHAPE STUDIES INDICATE 
STRONGEST DEPENDENCE IS ON q95
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� To date, attempts to obtain high performance at densities compatible with high 
 efficiency ECCD operation have not been successful

� In order to validate predictive models of ECCD efficiency in AT-like conditions, 
 studies have been conducted at slightly reduced plasma parameters optimized
 for maximizing the effect of ECCD for diagnostic purposes..

— Ip = 1.1 MA, BT = 1.7 T

— βN = 3.3, H89 = 2.5

— ne = 4.0 × 1019 m–3

— EC Power = 2 MW directed for co-current drive at ρ = 0.3

 ECCD SCOPING STUDIES HAVE BEEN CARRIED OUT 
AT SOMEWHAT REDUCED PLASMA PARAMETERS

130-01/jy



S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY

MEASURED ECCD EFFICIENCY IS CONSISTENT WITH EFFICIENCY 
REQUIRED IN AT TARGET SCENARIO
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MORE IMPORTANTLY, MEASURED ECCD EFFICIENCY 
IS CONSISTENT WITH FOKKER-PLANCK PREDICTIONS 

OVER A WIDE RANGE OF PLASMA CONDITIONS
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SUMMARY

� The major elements required in achieving integrated, long-pulse,
 advanced tokamak operation have been demonstrated on DIII-D.

—   β ~ 4.2%, βp ~ 2, βN H89 ~ 12, fBS ~ 65%, fNI  ~ 80% sustained for 5 τE
— Density control (ne < 5x1019 m-3) at βN ~ 4
— ECCD efficiencies consistent with theory and future AT needs 

� Several issues involving the integration of these elements remain. 
 Of particular importance are:

— Obtaining adequate density control at high β
— Successful implementation of RWM feedback to allow βN > 4li 
— Understanding effect of density/rotation on RWM and NTM limits
 

� Physics understanding of stability, confinement, ECCD, and 
 particle control in high performance plasmas has been advanced

—  Stability
 �   Error field amplification by RWMs observed and mitigated by improved error
         field correction techniques   (see L. Johnson, P4.008)
 �   Onset of m=2/n=1 NTM correlated with qmin -> 1.5 - consistent with NTM
 theory which predicts increase in ∆' as qmin -> 1.5  (see D. Brennan P3.004)
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—  Confinement
 �   GLF23 modeling indicates that E×B shear acts to reduce (but not eliminate)
         turbulence-driven transport, consistent with measured χi > χi, neo 

—  ECCD
 �   Measured ECCD efficiency improves with increasing βe, consistent with 
 theoretical predictions (see C. Petty P3.062)

—  Particle Control
 �   Slightly unbalanced magnetic configuration (DRSEP = 1.0 cm) is adequate
 for sufficient particle exhaust in these high performance plasmas.
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