THE GOAL OF THE DIII-D ADVANCED TOKAMAK PROGRAM IS TO DEVELOP THE BASIS FOR A STEADY-STATE, HIGH PERFOMANCE TOKAMAK

- Simultaneously require:

 - High fusion gain
 - Non-inductive current sustainment
 - High fusion power density \implies High plasma pressure (high β)
 - \Rightarrow Good energy confinement (high τ_{F})
 - \Rightarrow High bootstrap fraction (high β_{P})
- Gain and bootstrap current have conflicting scaling
 - Fusion gain: $\beta \tau_{E} \propto (\beta_{N}/q) (H_{89}/q^{\alpha})$
 - Bootstrap current: $f_{BS} \propto \beta_p \propto q \beta_N$
- \Rightarrow Self-consistent scenarios require β_N and H₈₉ above conventional tokamak values

Definitions: $\beta_N = \beta/(I/aB)$ $H_{89} = \tau_E / \tau_{E,ITER89P}$

CHOSEN SCENARIO REPRESENTS COMPROMISE BETWEEN ATTAINABLE FUSION POWER DENSITY AND BOOTSTRAP CURRENT FRACTION

DIII-D STUDIES HAVE SHOWN THAT SIGNIFICANT GAIN IN STEADY-STATE CAPABILITY CAN BE OBTAINED WITH MODERATE COST IN FUSION GAIN

HIGHER f_{BS} WITH SIMILAR $\beta \tau$ IS ACHIEVED IN ADVANCED TOKAMAK SCENARIO AS A RESULT OF HIGHER β_N H

ACHIEVED β_N IS WELL ABOVE THE CALCULATED n=1 STABILITY LIMIT

IMPROVED CONFINEMENT IS CONSISTENT WITH DRIFT-WAVE SIMULATION WITH EXB SHEAR

- GLF23 model* self-consistently calculates n_e, T_e, T_i, and v_{tor} resulting from input source profiles and calculated turbulence driven by ITG, TEM, and ETG with effects of E×B shear
- Model predictions are consistent with measured profiles

*Waltz et al., Phys. Plasmas <u>5</u> 1695 (1998)

University

MODEL SUGGESTS THAT EXB SHEAR REDUCES BUT DOES NOT ELIMINATE TURBULENT TRANSPORT

- Enhanced confinement due to suppressed turbulent transport across most of the plasma radius
- Toroidal viscosity predicted by GLF23 model is approximately a factor of 2 lower than the ion thermal diffusivity

CONDITIONS CONDUCIVE TO HIGH f_{BS} AND HIGH $\beta \tau$ (β_N = 4, H_{89} = 3 WITH q_{min} > 1.5) SUSTAINED FOR $5\tau_E$

LARGE FRACTION OF CURRENT (f_{BS} ~ 65% AND f_{NI} ~ 80%) IS DRIVEN NON-INDUCTIVELY - REMAINING OHMIC CURRENT PEAKED OFF-AXIS

 Ohmic current at this time has penetrated to core. Replacing Ohmic Current at mid-radius with localized ECCD earlier in evolution should help maintain favorable q profile

UNFORTUNATELY, DENSITY INCREASES UNCONTROLLABLY IN THIS DISCHARGE, LIMITING EFFECTIVENESS OF ECCD -> DENSITY CONTROL IS REQUIRED

 Density control using the new upper divertor has been demonstrated with slightly unbalanced DN plasma shape - necessary to obtain adequate particle flux to upper divertor (DRSEP > 0.5 cm)

DENSITY CONTROL REQUIREMENTS COME AT A COST AS β LIMIT IS REDUCED IN PUMPING GEOMETRY

 Primary difference is magnetic balance – DRSEP ~ 1 cm required to obtain adequate particle flux to upper divertor

RECENT SHAPE STUDIES INDICATE STRONGEST DEPENDENCE IS ON q95

- Increasing DRSEP causes a drop in the shape parameter S = (I/aB) q₉₅ and q₉₅ itself
- 1999-2000 studies indicated variation of RWM β limit with shape parameter and q₉₅

ECCD SCOPING STUDIES HAVE BEEN CARRIED OUT AT SOMEWHAT REDUCED PLASMA PARAMETERS

- To date, attempts to obtain high performance at densities compatible with high efficiency ECCD operation have not been successful
- In order to validate predictive models of ECCD efficiency in AT-like conditions, studies have been conducted at slightly reduced plasma parameters optimized for maximizing the effect of ECCD for diagnostic purposes..
 - I_p = 1.1 MA, B_T = 1.7 T
 - β_{N} = 3.3, H₈₉ = 2.5
 - $n_e = 4.0 \times 10^{19} \text{ m}^{-3}$
 - EC Power = 2 MW directed for co-current drive at ρ = 0.3

MEASURED ECCD EFFICIENCY IS CONSISTENT WITH EFFICIENCY REQUIRED IN AT TARGET SCENARIO

MORE IMPORTANTLY, MEASURED ECCD EFFICIENCY IS CONSISTENT WITH FOKKER-PLANCK PREDICTIONS OVER A WIDE RANGE OF PLASMA CONDITIONS

- The major elements required in achieving integrated, long-pulse, advanced tokamak operation have been demonstrated on DIII-D.
 - β ~ 4.2%, β_p ~ 2, β_N H₈₉ ~ 12, f_{BS} ~ 65%, f_{NI} ~ 80% sustained for 5 τ_E
 - Density control (n_e < 5x10¹⁹ m⁻³) at $\beta_N \sim 4$
 - ECCD efficiencies consistent with theory and future AT needs
- Several issues involving the integration of these elements remain.
 Of particular importance are:
 - Obtaining adequate density control at high β
 - Successful implementation of RWM feedback to allow $\beta_N > 4\ell_i$
 - Understanding effect of density/rotation on RWM and NTM limits
- Physics understanding of stability, confinement, ECCD, and particle control in high performance plasmas has been advanced
 - Stability
 - ★ Error field amplification by RWMs observed and mitigated by improved error field correction techniques (see L. Johnson, P4.008)
 - ★ Onset of m=2/n=1 NTM correlated with q_{min} -> 1.5 consistent with NTM theory which predicts increase in ∆' as q_{min} -> 1.5 (see D. Brennan P3.004)
 - Confinement
 - ★ GLF23 modeling indicates that E×B shear acts to reduce (but not eliminate) turbulence-driven transport, consistent with measured $\chi_i > \chi_{i, neo}$
 - ECCD
 - ★ Measured ECCD efficiency improves with increasing β_e , consistent with theoretical predictions (see C. Petty P3.062)
 - Particle Control
 - ★ Slightly unbalanced magnetic configuration (DRSEP = 1.0 cm) is adequate for sufficient particle exhaust in these high performance plasmas.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of Energy under Contract Nos. DE-AC05-00OR22725 (ORNL), DE-AC03-99ER54463 (GA), W-7405-ENG-48 (LLNL), DE-AC02-76CH03073 (PPPL), DE-AC04-94AL85000 (SNL) and Grant Nos. DE-AC05-76OR000033 (ORISE), DE-FG02-89ER53297 (Columbia U.), and DE-FG02-92ER54141 (Lehigh U.).

