OVERVIEW OF H-MODE PEDESTAL STUDIES ON THE DIII-D TOKAMAK

T.H. Osborne, 1 K.H. Burrell, 1 T.N. Carlstrom, 1 M.S. Chu, E.J. Doyle, 2 M.E. Fenstermacher, 3 J.R. Ferron, 1 R.J. Groebner, 1 L.L. Lao, 1 A.W. Leonard, 1 T.W. Petrie, 1 G.D. Porter, 3 M.A. Mahdavi, 1 G.R. McKee, 4 D. Mosseessian, 5 R.A. Moyer, 6 F.W. Perkins, 7 T.L. Rhodes, 2 P.B. Snyder, 1 E.J. Strait, 1 D.M. Thomas, 1 and A.D. Turnbull 1

1 General Atomics, P.O. Box 85608, San Diego, California, 92186-5608 USA
2 University of California, Los Angeles, California, USA
3 Lawrence Livermore National Laboratory, Livermore, California, USA
4 University of Wisconsin, Madison, Wisconsin, USA
5 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
6 University of California, San Diego, California, USA
7 Princeton Plasmas Physics Laboratory, Princeton, New Jersey, USA

H-mode pedestal studies on DIII-D are motivated by the impact of this region on the global energy confinement and stability, and, through ELMs, on the divertor. Work on the H-mode edge was divided into studies of edge stability, width of the H-mode transport barrier, and the ELM energy loss mechanism.

A model for edge stability based on lower n edge localized ideal kink-ballooning modes is consistent with the variation in edge pressure gradient with shape, and with observation of fast growing lower n modes as ELM precursors. Calculations with the GATO and ELITE codes indicate that critical pressure gradient for instability decreases with increasing n. It is hypothesis that the n value of the mode is set by the highest n without second stability. Second stability was demonstrated with ELITE for circular cross-section at intermediate n (10–40). We will report on an extension of ELITE to non-circular flux surface geometry, and on quantitative comparisons between edge stability codes and measurements using a new Li beam diagnostic for determination of the edge current density.

Experiments on DIII-D indicate that the H-mode transport barrier width is proportional to the edge poloidal β with no explicit temperature dependence. We will report on a dimensionally similar comparison of edge parameters with Alcator-Cmod which may show whether the H-mode barrier width is dependent on atomic physics. We will also report on comparison of the edge particle source profile and the barrier width.

The radial extent of the lower n kink ballooning mode which is a function of the overall q and pressure profiles may determine the ELM size. We will report experiments on DIII-D designed to test this model.

*Work supported by U.S. Department of Energy under Contracts DE-AC03-99ER54463, W-7405-ENG-48, DE-AC02-76CH03073, and Grants DE-FG03-01ER54615, DE-FG03-95ER54294, and DE-FG03-96ER54373.