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Motivation and Goals for H-mode Pedestal Studies

♦ Motivation
ο As a boundary condition for core kinetic profiles, H-mode transport barrier

characteristics can strongly influence energy transport and β limit.

ο The ELM instability can negatively impact core performance and result in
unmanageable divertor power loads.

♦ Goals
ο Develop a physics based predictive capability for the H-mode pedestal

characteristics in the Type I ELM regime to be used as boundary
conditions in core transport models, and for possible control of the
pedestal parameters.

ο Develop a physics based predictive capability for the effects of Type I
ELMs in the core and divertor, for possible mitigation of the negative
effects of ELMs

ο Explore alternatives to the Type I ELM regime that may provide a path to
high core performance without the negative ELM effects.
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H-mode pedestal may impact H-mode based tokamak reactor
performance through temperature profile stiffness.

[1] J.E. Kinsey, et al., Berchtesgarten EPS, III 1081 (1997)
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[2] G.Janeschitz, et.al Maastricht EPS, 23J (1999) 1445.

Effect of H-mode pedestal on H factor varies with tokamak
 possibly due to changes in turbulent transport process[2]

[3]

[3]
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H-mode pedestal pressure loss with stiff temperature profiles
contribute to H reduction at high density on DIII-D

♦ Stored energy loss at high
density associated with loss
of pPED and stiff T profiles.

♦ Density profile peaking can
compensate for reduced
pPED.
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H-mode pedestal can impact core stability

Unstable n=1
Ideal Mode
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Type I ELM energy loss increases with H-mode pedestal energy.
ELM divertor heat loads can be a problem for reactor scale device

♦ ∆W~ 1/3 of Eped for DIII-D and 1/4 of Eped

for JET.

♦ Assuming ∆WELM/pPED is the same for
DIII-D and ITER gives for ITER
∆WELM=8 TPEDMJ/keV
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Edge Stability

♦ Determining a scaling for pPED or
TPED is separated into a study of
the H-mode transport barrier
width, ∆, and pressure gradient, p′

♦ p′ may be set by the ELM
instability.

♦ ∆ may be set by the physics of
turbulence suppression.

♦ Stability work has concentrated on
Type I ELM regime which has
high energy confinement over a
wide range of conditions.

♦ Comparison of conditions just
before an ELM with theory:

ο GATO, 1<n<11 ideal modes in
real geometry with wall

ο BALOO, n=∞ ideal ballooning
modes

ο ELITE, intermediate n
pealing/ballooning modes

Pe

P´e

∆Pe

Pedestal Parameter Evolution in Type I ELM Discharge
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Future work on edge stability: Li Beam Diagnostic
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♦ Lithium Beam Diagnostic
(D.M. Thomas[1]): high spatial
resolution Zeeman effect
measurement of edge magnetic
field

ο Diagnostic is installed on
DIII-D and taking
preliminary data.

ο Will allow quantitative
comparison between theory
and experiment
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Expected reduction in uncertainty in jEDGE from inclusion 
of LiB data and reduction in magnetic diagnostic error

[1] D.M Thomas, et.al, Rev. Sci. Inst.
      72 1023 (2001).
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H-mode transport barrier width and stability limit
are coupled for lower n modes.

• Improved Stability for narrow H-mode barrier width predicted in GATO runs for
  n=5 and by Rodgers, Drake, Zeiler theory.
• Effect of barrier width for higher n modes (no SS access to ballooning) predicted by
  RDZ theory does not appear to be present.
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• Second stability occurs for lower n modes
• First mode without second stable access may
   be a function shape (shifted circle calculation)[1]

• p′ limit decreases with increasing n
  (GATO calculation for wall=1.5a,
   self consistent jBOOT)
• First mode without second stable
  access may be responsible for ELM

BALMSC Code (Chu, Chance)

[2]

[2]J.R. Ferron, et al., Phys. Plasmas 7 1976
(2000).

[1]H.R. Wilson, R.L. Miller, Phys. Plasmas 6,
873 (1999)  extended by P. Snyder

¥ Maximum n limited
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Pressure gradient range for 
High Squareness, small ELMs

ELM mode may be the highest n ideal mode without access to 
second stability and consistent with FLR stabilization 



T. Osborne,  EPS 2001 12

   
NATIONAL FUSION FACILITY

S A N  D I E G O

DIII–D

Pe

P´e

∆Pe

H-mode Transport Barrier Width

Pedestal Parameter Evolution in Type I ELM Discharge
♦ Derivation of barrier width scaling

form data base of discharges.

♦ Testing of derived scaling with
specific experiments.

♦ Dimensionally similar comparison
with CMOD discharges.

♦ Role of neutrals model for in
determining the density pedestal.

♦ Future Work
ο Hopefully more direct inter-

machine comparisons

ο Development of a coupled turbulent
transport and stability code for the
edge (underway).
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H-mode transport barrier width scaling
♦ Empirical scaling: only IP,  pe

PED, Te
PED

 are strongly correlated with ∆:   
∆∝(pe

PED)0.52/BP
0.94 ≈ (β PPED) 1/2  or ∆∝(Te

PED)0.36/BP
0.44 ≈ (ρ PPED) 1/2

♦ Shaing[1]: Ion obit loss ⇒ ER , ωExB ⇒ turbulence suppression
∆/R ≈ (ε/s)1/2ρP /R, where s=orbit squeezing.
s=|1-dER/dR/(BP ΩP)| ≈ |1+(ρP 

2
 /(δLTi)| ≈ 1 ⇒ δSHAING/R ≈ 0.6ρP /R

♦ IFS-PPPL[2]: ITG and TEM turbulence, nonlinear simulations indicate turbulence is
suppressed when ωExB >  γL ⇒ ∆IFS-PPPL/R ≈ 4 ρi /R (Τi / Τe) (1+f(q))/(1+f(ε)) [×Sx][3]

[1]K.C. Shaing, Phys. Fluids B 4, 290 (1992)
[2]W. Dorland, et. al, ISPP-17, Theory of Fusion Plasma s, SFI Bologna 185 (1996)
[3]M. Sugihara, et. al, 2000 EPS.
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Divertor pumping experiment appears to rule out the TPED as a
controlling parameter for H-mode transport barrier width

♦ To match the variation of ∆ just before the
ELM (or for time average) with divertor
pumping requires ∆ ∝(Te

PED)0.2  while to match
the variation of ∆ between ELMs requires ∆
∝(Te

PED)1.0

♦ ∆ ∝(pe
PED)0.5  is a better match to the overall

and between ELM ∆ variation.
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Pedestal dimensionless scaling experiment in
collaboration with Alcator-CMOD Group

♦ Can dimensionless scaling
be applied to H-mode
transport barrier width (or is
atomic physics important) ?

♦ Match plasma shape, q;
scale Te

PED, ne
PED to

maintain ν∗, ρ∗, β fixed

♦ Data still being analyzed
but possible quasi-coherent
mode observed in DIII-D

♦ Future direct comparisons
between machines of this
type could be very helpful.

Shapes were well matched

Te
PED and ne

PED were scaled to keep
dimensionless quantities fixed.
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♦ Engelhardt-Wagner model[1] extended by Mahdavi[2]

to include poloidal variation in neutral source

[1]W. Engelhardt, W. Fenenberg, J. Nucl. Mater. 76-77 (1978) 518.
[2]M.A. Mahdavi et al., “High Performance H-mode Plasmas at Densities
above the Greenwald Limit”, 2000 IAEA meeting, submitted to Nucl. Fusion
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ELM effects

Pe

P´e

∆Pe

Pedestal Parameter Evolution in Type I ELM Discharge♦ Radial extent of the ELM
instability eigenmode correlated
with ELM size.

♦ Quiescent H-mode: high energy
confinement ELM free regime
without the problems of ELM free
H-mode (density and impurity
accumulation, large edge current
and resulting instability).

♦ Future work.
ο Other models for the Type I ELM

energy loss mechanism ?

– Coupling of edge
kink/ballooning to core ?

– Response of stiff temperature
profile ?

– Inward propagation of the
instability ?
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Change in ELM size with shape and q may be related to change in  radial mod
width of associated instability (JT-60U discharges[1]).

♦ Giant ELMs ~ 100 Hz, small amplitude “grassy” ELMs ~ 500-1000 Hz
♦ At intermediate δ and q95 mixtures of giant and grassy ELMs

♦ Unstable edge modes in grassy elm discharges have narrow radial mode
width (ELITE Code).

♦ Changes in radial width related to difference in q profiles
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JT-60U Results

[1]LL. Lao, et. al, Nucl. Fusion, 41 295 (2001).
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♦ ∆WELM/WPED decreases

♦ ELM mode increases in n

♦ Calculated jBOOT  decreases
⇒ edge magnetic shear
increases ⇒ SS access lost

♦ ∇p is reduced from
calculated n=5 limit
(GATO) to ideal nigh n
ballooning mode limit
(BALOO).

Reduction in ELM size at high density may be due to reduced
mode number at higher collisionality

S S j jTOR
EDGE

TOR≈ −0 2 /

Sum of displacements
for all m numbers

n = 2

n = 5

n = 10

Mode width
decreases with
increasing n.
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ELM size relative to WPED is reduced at high density

n number of ELM mode increases with ne perhaps due to loss of second stability

With increasing ne
PED or ν∗ ∝ n/T2.
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ELM free H-mode with edge harmonic oscillation (EHO) has
high H and no density accumulation.

♦ Counter Injection

♦ Low density with divertor
pumping

♦ Large outer gap

♦ H89P to 2.4

♦ βN to 2.9

♦ βNH to 7
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Conclusions
♦ Edge Stability

ο Low - medium n edge localized kink/ballooning mode is good candidate
for Type I ELM instability

– Quantitative comparison between theory and experiment will be
possible with Li-Beam edge current density diagnostic.

– Extension of intermediate n theory

ο MHD associated with QH-mode still not understood

♦ Transport barrier width
ο DIII-D - CMOD comparison may indicate dimensionless scaling applies

to the edge but need more inter-machine comparisons to settle this and to
derive the scaling laws.

ο Need to develop a model for the edge including both transport and
stability since these effects are coupled

♦ ELM Effects
ο ELM size may be related to low-medium n mode radial extent

ο Other possibilities (e.g stiff profiles) should be tested


