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ABSTRACT. A theoretical formulation of the feedback stabilization of the resistive wall
mode (RWM) for an ideal plasma in a general equilibrium configuration is reported. It is
described in terms of two problems that correspond to two different experimental operation
scenarios: the open loop and the closed loop operations. Detailed formulation and numerical
solution of the open and closed loop problems and its application to DIII-D are presented.

INTRODUCTION. In many magnetic fusion configurations, such as the high β advanced
tokamak and the RFP, the configurations are unstable without a nearby perfect conducting
wall but stable with the conducting wall present. When the resistivity of the conducting wall
is taken into account, the configuration is found to be unstable to the RWM which is driven
unstable by the plasma but with its growth rate determined by the diffusion of the perturbed
magnetic flux through the external resistive wall. Therefore, to achieve long term stability of
the plasma, it is necessary to stabilize the plasma against the RWM. At the present moment,
the most promising method for stabilization of the RWM is feedback stabilization by using a
set of sensor loops and feedback coils placed external to the plasma. In this work, we present
a general formulation for the modeling of the feedback stabilization of the RWM for an ideal
plasma. We show that conceptually, this issue consists of two related problems, each of
which corresponds to a different operation of the system in the experiment; i.e. the open loop
operation and closed (feedback) loop operation. When the feedback loop is open, the feed-
back system acts passively. With the plasma obeying ideal MHD, the dynamics of the plasma
together with a thin resistive wall can be cast into a self–adjoint form. It describes the very
low frequency ideal MHD response of the plasma with respect to an arbitrary skin current
distribution pattern on the external resistive wall. The dynamics of the system can be
described as a set of (both stable and unstable) spatially distributed L/R circuits with a set of
associated eigenmodes. The inverse of the L/R times of these circuits are the growth (decay)
rates; the amplitudes of these eigenmodes determine the amplitudes of the resistive wall
mode. The magnetic fluxes induced by these eigenmodes in the sensor loops form a sensor
matrix. Similarly, the excitation of these open loop eigenmodes by the external coils forms an
excitation matrix. By utilizing the matrices defined above, together with the feedback logic,
the closed feedback loop problem is reduced to a small set of coupled lumped circuit equa-
tions. This set of equations is, in general, non-self-adjoint and determines the complete
dynamic behavior of the system during feedback. Solution of the characteristic equations [1]
gives the stability of the system during feedback. These two problems have been imple-
mented numerically and applied to the DIII-D tokamak. We found that in general, installing
the sensor loops inside of the resistive wall is superior to installing them outside. When the
unstable mode structure is identified and filtered out as input to the feedback, inside located
sensor loops do not give rise to a theoretical upper limit to the gain factor; whereas, there is a
theoretical upper limit to the gain factor if the sensors are located outside.

GENERAL CONSIDERATIONS. We divide the region under consideration into the
plasma (P), the inner vacuum (IV) (between the plasma and the resistive wall), the resistive
wall (W), the outer vacuum (OV) (between the resistive wall and the feedback coil), the coil
(C), and the external vacuum (EV) (outside of the resistive wall) regions. We consider only
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slowly evolving plasma motions, such that the plasma kinetic energy is negligible, and the
plasma response is described by the ideal MHD equations. In the vacuum regions, the per-
turbed magnetic fields may be represented by δB = ∇ χ, with the magnetic potential χ satisfy-
ing the Poisson’s equation ∇ χ2 = 0. Starting from these equations, it is then easy to show that
during the perturbed plasma motion, the following bilinear energy equation is satisfied:

δWp + δWIV + δWOV + δWEV + DW + δEc = 0    . (1)

In Eq. (1), δWp is the plasma potential energy, δWIV , δWOV , and δWEV are the vacuum
potential energies in the various vacuum regions, DW  is the energy flux into the resistive wall
and δEc  is the energy injected by the feedback coils. The explicit form of δWp in terms of the
plasma displacement ξ, and the forms of the vacuum energies in terms of χ are well known.
The expression for DW is

D dS
nW

W

= −+
+

−
+∫

1
2 0µ

χ χ
∂χ
∂

[( ) ]     . (2)

Here the superscript (+) stands for the adjoint function and the subscript (–,+) indicates the
value of on the (inner, outer) side of the resistive wall. A thin resistive wall with normal
magnetic field continuous across it has been assumed. δEc is given by an expression similar
to Eq. (2), except integrating over the coil surface.

DW , the energy influx into the resistive wall, is dissipated by its resistivity. The resistive
wall mode arises because DW   ≠  0. For a thin wall, the current j = (1/µ0)∇× B can be
represented by j = ∇ z×∇ K, here z is a coordinate perpendicular to the wall and K is the
current flux. With a wall thickness δ, and wall resistivity η, the current flux K on the resistive
wall and the magnetic potential χ are connected through

∇ • ∇ ∇ •[ ] = − ∇s sz K z
t z

η ∂
∂
∂χ
∂

| | | |2 2    . (3)

Here the subscript s in ∇ s indicates the operator operates only along the surface of the
resistive wall. The operator in Eq. (3) is self-adjoint. This means that K may be solved in
terms of χ through the utilization of a set of orthonormal tank-eigenfunctions {Ki} defined by
∇ s •∇ s Ki = –ωiKi . For simplicity, we have taken the wall property (δ,η) to be uniform. In
terms of Ki, then
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The expression for δEc , however, has to be left in its general form. It can not be determined
until the currents in the coils ( determined by the feedback scheme) are given. δEc is gener-
ally non-self-adjoint. In special cases, δEc is also self-adjoint. The general solution of the
feedback problem in this case is given in Ref. [2].

OPEN LOOP RESISTIVE WALL MODES. We first consider the open loop case. Without
closing the feedback loop, δEc =0. With γ = (∂/∂t),utilizing Eq. (4), Eq. (1) has been shown to
be a self-adjoint expression and can be  solved by modifications of the MHD codes. It gives
us a set of ortho-normal eigenfunctions, with ξ = ξi, and χ = χi,, that satisfies

δ δ δ δ γ δW i j W i j W i j W i j D i jp IV OV EV w
i

ij( , ) ( , ) ( , ) ( , ) ( , )+ + + = − = −
2

    , (5)

with the normalization 
i

i ia a∑ + =1. We note that Eq. (5) gives us a set of resistive wall
eigenmodes Opi = (ξ i, χ i) with growth (or damping) rate γi. Each eigenmode has a distinct
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eddy current pattern on the resistive wall. This set {Opi} is complete for arbitrary eddy
current distribution on the resistive wall. They are the open loop eigenfunctions.
Conceptually, these {Opi } describes a set of interwoven circuits on the resistive wall driven
by the plasma, with growth (or damping) rates {γi}.

The above formulation has been implemented numerically by utilizing the DCON [3] and
the VACUUM [4] codes and applied to the DIII-D geometry shown in Fig. 1. Examples of an
unstable n=1 Opi  with its eddy current pattern on the resistive wall is shown Fig. 2. The
pattern remains essentially intact when the plasma β is increased across the stability boundary
given by the wall positioned at infinity. The stable mode that is least stable is interesting. Its
eddy current pattern is found to have helicity opposite to that of the unstable mode. It  has the
(m/n=1/1) pattern. It is expected that an external perturbation with the (1/1) signature will
easily deform the plasma.

CLOSED LOOP FEEDBACK STABILIZA-
TION. We next consider the case of closed loop
operation. Because {Opi} is complete; the normal
magnetic field on the resistive wall can be expanded
in terms of this set of eigenfunctions. From the
boundary conditions, the perturbation inside of the
inner surface of the resistive wall is completely
determined if the value of the magnetic field is
given on the resistive wall. The magnetic potential
needs to deviate from a superposition of {Opi } only
in the region outside of the outer surface of the
resistive wall. Or in the OV and EV regions,

χ α χ χ= +∑ i i c out
ct I( )    . (6)

In Eq. (6), ai’s are the expansion coefficients, and
are the amplitudes of the resistive wall modes that
are excited. We note that the open loop eigen-
functions are assumed to be constant in the present
study or we implicitly assumed that the plasma has
reached steady state with time constant longer than
the resistive wall time, whereas the amplitudes of
them, the ai ‘s  vary on the time scale of the
resistive wall mode. χout

c  is the extra solution that
exists outside of the outer wall. The subscript out is
used here specifically to remind us that χout

c  is
present only outside of the resistive wall. χout

c  has
the special property that it not only satisfies the
Poisson’s equation but also has no perpendicular
magnetic field at the resistive wall. In Eq. (6), we
also utilized the fact that this extra solution is
proportional to the currents in the coils. We
substitute Eq. (6) into Eq. (1), and noting Eq. (5),
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We call Ei
c  the excitation matrix for the resistive wall mode. It is given by
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The system for describing the feedback operation is com-
pleted by specifying the circuit equations for the Ic’s. We
may represent them as

∂
∂ τ
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c c

c
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c

s
s i

c+ =∑ ({ },{ })
'

   , (7)

with Fs being the flux measured in the sensor loops.

CHARACTERISTIC EQUATIONS. If we let s = (∂/∂t),
and linearized Eq. (7), then the linear response of the
feedback system is related to the following finite
dimensional eigenvalue problem

RV s I V
↔→ ↔→
=    . (8)

In Eq. (8), V I
→ → →
= ( , )α is the vector describing the state of

the feedback system. R
↔

 is the response matrix, with the
structure
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Γ

   , (9)

Γij = γδij is a diagonal resistive wall growth matrix,
E Eic i

c=  is the excitation matrix. The sensor loop coupling
matrix GF is given by
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and the self-coupling matrix L of the feedback coils is given by L G
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Note that as formulated here, all the quantities in Eq. (9) are explicitly specified when the
feedback system is specified. The characteristics determinant D(s) of the system is given by

D s s I R( ) = −
↔ ↔

   . (10)

The solution of Eq. (10) gives us the growth rates of the whole system. The coil current is
assumed to be sinusoidally varying in the toroidal direction. The sensor placement is also
shown in Fig. 1. We have found that for stabilization the sensors have to be more effective in
sensing the unstable mode than the other modes. The general characteristics of the mode
behavior as a function of gain is shown in Fig. 3. It is seen that as the gain is increased, the
mode is stabilized in Fig. 3(a) if the gain is large enough; whereas in Fig. 3(b), stability is
obtained only over a bracketed range of gains.

This is a report of work supported by the U.S. Department of Energy under Grant No.
DE-FG03-95ER54309 and Contract No. DE-AC02-76CH03073.

[1] Liu, Y.Q., and Bondeson, A., Phys. Rev. Lett. 84, 907 (2000).
[2] Chance, M.S., Chu, M.S, and Okabayashi, M, Proc. of the 18th IAEA Fusion Energy

Conference, Sorrento, Italy, 2000 (International Atomic Energy Agency, Vienna, 2000)
Paper IAEA-CN-77/THP2/01.

[3] Glasser, A.H., and Chance, M.S., Bull Am. Phys. Soc. 42, 1848 (1997).
[4] Chance, M.S., Phys. Plasmas 4, 2161 (1997).


