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ABSTRACT

The DIII–D program is making excellent progress towards
experimentally validating a predictive model of electron cyclotron
current drive (ECCD). The measured ECCD is in good agreement
with quasi-linear Fokker-Planck calculations over a wide range of
toroidal and poloidal injection angles, although the measured
counter ECCD is less than theoretically predicted. Tests of electron
trapping show that the measured ECCD efficiency decreases
rapidly with radius in low beta plasmas, but the ECCD efficiency
does not decrease much with radius in high beta plasmas. This
shows that the detrimental effects of electron trapping on the
ECCD efficiency are greatly reduced at high beta (relevant for
advanced tokamaks).
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FEATURES OF ECH PROGRAM ON DIII–D TOKAMAK

● Experimental program uses electron cyclotron waves to

— Probe transport properties (e.g., heat pulse propagation)

— Control instabilities (e.g., neoclassical tearing modes)

— Modify current profile (e.g., advanced tokamaks)

● In addition, electron cyclotron current drive (ECCD) experiments seek to
validate a predictive model of ECCD
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DIII–D HAS A FLEXIBLE ECH SYSTEM

● New steerable launcher (PPPL) has
between-shot toroidal and poloidal
steering capability

● The system has flexibility in the experimental
setup to test theory

ECH Launch

ECH Resonance
layer

● The experimental results described here
use four gyrotrons with up to 2.1 MW
injection power



MSE MEASUREMENTS ARE CRUCIAL FOR
DETERMINATION OF ECCD PROFILE

● MSE (motional Stark effect) diagnostic measures
magnetic field pitch angles at different major radii,
so Bz = Bt tan–1 (pitch angle)

● From Ampere’s law

● The measured ∂Bz/∂R are compared to simulations to include the effects of
small changes in bootstrap, NBCD, and Ohmic currents

● Total driven current is determined from a best statistical fit to the data, varying the
location, width, and magnitude of the driven current in the simulation

so the local change in jφ due to ECCD is proportional to 
the change in ∆Bz/∆R, where ∆Bz is the difference in Bz 
between adjacent MSE channels and ∆R is the spatial separation
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MSE MEASUREMENTS SHOW THAT THE INCREASE IN 
CURRENT DENSITY FROM ECCD IS AS LOCALIZED AS 

RAY TRACING CALCULATIONS PREDICT
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THEORETICAL DEPENDENCES OF ECCD
● Using the standard theoretical current drive efficiency
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a dimensionless current drive efficiency can be derived:
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● ECCD experiments on DIII–D have measured ζ as a function of
— Parallel index of refraction (N||)
— Poloidal angle 
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— Normalized radius (ρ)
— Electron beta (βe)



VARYING N|| CLEARLY CHANGES ECCD
FROM CO TO COUNTER DIRECTION, ALTHOUGH

COUNTER ECCD IS BELOW THEORETICAL PREDICTIONS
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A CLOSER LOOK AT COUNTER ECCD USING TWO
ANALYSIS METHODS CONFIRMS THAT THE MEASURED

COUNTER ECCD IS LESS THAN PREDICTED BY 1σ OR MORE

S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY 122–01/CCP/wj

MSE Simulation Method

∆ 
 µ o

  ∂B
z   ∝

 
J φ

 (M
A/

m
2 )

Loop Voltage Analysis Method
0.2

–0.2

0.0

–0.4

Major Radius (m)
1.5 1.6 1.7 1.8 1.9 2.0 0.0 0.2 0.4 0.6

0.2

0.0

–0.2

–0.4

–0.6

–0.8

Best fit ECCD = –35±6 kA
Simulated MSE
Measured MSE

J e
c 

 (M
A/

m
2 )

CQL3D = –63 kA
Measured = –43±22 kA

ρ

1
∂R

2.1



POLOIDAL SCANS SHOW SYSTEMATIC INCREASE
IN ECCD EFFICIENCY TO HIGH FIELD SIDE

● Theoretically the increase in ECCD efficiency with poloidal angle
is due to (a) reduced trapping effects and (b) wave absorption on
higher energy elections from Nll upshift

056-00/CCP/jy
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ECCD EFFICIENCY DECREASES RAPIDLY WITH RADIUS
(FOR POLOIDAL ANGLE ≈ 90 deg) AS EXPECTED FROM THEORY

FOR LOW BETA PLASMAS

● Fraction of trapped electrons increases with increasing radius,
leading to larger electron trapping which reduces the ECCD
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MEASURED OFF-AXIS ECCD EFFICIENCY INCREASES WITH
ELECTRON BETA, INDICATING REDUCED TRAPPING EFFECTS
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OFF-AXIS ECCD EFFICIENCY INCREASES WITH
HIGHER ELECTRON BETA BECAUSE RESONANCE MOVES
AWAY FROM TRAPPING BOUNDARY IN VELOCITY SPACE
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● Contours of ECH driven flux in velocity space

βe = 0.2% (L–mode) βe = 1.8% (H–mode)
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OFF-AXIS ECCD IS MORE FAVORABLE IN HIGH-β PLASMAS
SINCE ECCD EFFICIENCY DOES NOT DECREASE MUCH WITH RADIUS
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MEASURED ECCD FROM MSE DATA IS
IN GOOD AGREEMENT WITH FOKKER-PLANCK CODE
INCLUDING Ell EFFECT EXCEPT FOR COUNTER ECCD
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CONCLUSIONS

● For central deposition, experimental current drive figure-of-merit is

γec Am−2 / W[ ] = 0.01×1020 × Te keV[ ]

● Experimental dependence of ECCD efficiency on N||, poloidal angle, and
radius is generally in agreement with Fokker-Planck code calculations, but
measured counter ECCD is lower than expected

● Measured ECCD efficiency increases with electron beta, as expected
owing to reduced trapping effects

● Other posters on ECCD:  P4.007 La Haye, P4.009 Wade


