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Introduction The gyrokinetic-Maxwell (GKM) equations lay a firm but computa-
tionally challenging foundation for the investigation of microinstabilities and anomalous
transport in fusion plasmas. Our attempts to solve these equations led to gyro – a par-
allel Eulerian code with gyrokinetic ions, collisional drift-kinetic (or adiabatic) electrons,
radial profile variation, and a fully time-explicit method for the collisionless part of the
problem. This approach grew out of earlier attempts to solve the equations with a semi-
implicit method [1]. We found the high-time-accuracy explicit approach with advective
Riemann solvers to be a more efficient and robust approach than semi-implicit discretiza-
tion schemes which split linear and nonlinear terms.

The decision to pursue a full-radius code was made in order to capture enough physics
to treat the ρ∗-dependence of turbulent transport in tokamaks, since the relative gy-
roradius, ρ∗ ≡ ρs/a, is a critical parameter for scaling to reactors (ρs is the local ion
gyroradius). While similar in many respects to the proven Eulerian (continuum) code
gs2 [4], which assumes vanishingly small ρ∗ inside a periodic flux tube, gyro can operate
in a radially nonperiodic tube with finite ρ∗. We are hopeful that thermal diffusivities
obtained from gyro can eventually be compared directly with experiment. Because of
the great complexity of a full-radius electromagnetic solver, we have aimed for simplicity,
and report here results from a restricted version of gyro suitable for collisional but elec-
trostatic turbulence. The more general electromagnetic, finite-β version will be described
elsewhere.

Numerical Approach Here we give a very brief overview of the numerical ap-
proach used in gyro. A complete description can be found in [2]. We decompose fluctuat-
ing quantities into field-line harmonics according to hs =

∑

n hsn(r, θ, λ, ε) exp[in(ϕ−qθ)],
and solve the coupled gyrokinetic-Maxwell equations for the electron and ion gyrocenter
distributions hsn. Here, s is a species label; (r, θ) are the radial and poloidal coordi-
nates; (λ, ε) the pitch-angle and energy coordinates; n the toroidal mode number; and
ϕ the toroidal angle. After attempting a variety of different solution methods, we rec-
ognized that discretization of the parallel advection operator, v‖(θ)∂θ, in the gyrokinetic
equations must be treated with care – particularly for trapped particles and passing
particles close to the trapped-passing boundary. While the poloidal angle, θ, is conve-
nient for the description of equilibrium quantities, it is a poor choice of variable for
numerical solution of the GKE. At bounce points θb, where v‖(θb) = 0, hsn(θ) develops
cusps. However, we can remove these cusps analytically by changing variable to the orbit
time: τ(λ, θ) ≡

∫ θ

−θb

dθ′/
√

1 − λB(θ′), where B is the magnetic field strength, normal-

ized to unity on-axis. For trapped particles, B(θb) = 1/λ, while for passing particles, we
set θb = π. The equations are then discretized using a third-order upwind scheme on
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an equally-spaced τ -grid. Fig. 1 shows the results of a numerical calculation of the θ-
dependence of hen. The latter remains well-behaved across bounce points, even for coarse
grids. Note, however, that the τ -grid method creates a new problem: the distribution
functions hsn will be known at a different set of points θj for each discrete value of the
pitch angle, λ. Consequently, the Poisson equation cannot be solved directly on a fixed
θ-grid. Instead, we represent the θ-dependence of velocity-space integrals (appearing
in the Maxwell equations) by polynomial blending functions. This is convenient be-

Figure 1: Numerical calculation of he using an
equally spaced τ -grid. Solid (dotted) line indicates
σ = 1(−1)

cause of the way θ-projections transform ve-
locity integrals into orbit integrals, and also
because the resultant θ-dependence of these
integrals is smooth even when velocity space
is very coarse-grained. This approach, which
we have found to be far more efficient than
poloidal decomposition by classical orthogo-
nal polynomials or Fourier series, is described
in detail in [2]. There are a variety of op-
tions for discretization of radial derivatives
and gyroaverages. For linear benchmarking
with adiabatic electrons, fully pseudospectral
schemes for both are most efficient. For non-
linear runs, however, we have found upwind
methods to be best for radial advection (at
least 7-point), and truncated pseudospectral

schemes (typically 17-point) for gyroaverages. Velocity-space integrations in both dimen-
sions are done with generalized Gauss-Legendre rules. While the full collisionless problem
is advanced in time using explicit 4th-order Runge-Kutta methods, typical grids pro-
hibit the use of explicit methods for electron pitch angle scattering due to huge viscous
Courant numbers near the trapped-passing boundary. Instead, we use operator-splitting
(as in gks and gs2), and so take a separate, implicit collisonal step. We also point out
that the addition of collisions to the GKE using the τ -grid method is complicated because
λ-derivatives at constant θ must be taken using a two-dimensional stencil. A direct sparse
solver (UMFPACK) is used for the associated matrix problem.

Linear Results For linear benchmarking we use the “cyclone DIII-D base case
parameter set” [R/a = 2.78, r/a = 0.5, q = 1.4, s = 0.8, R/Ln = 2.2, R/LT = 6.9]. These
are also defined in [3]. For adiabatic electrons, complete agreement with the gs2 code
[4] is obtained over the entire unstable range of kθρs, as shown in Fig. 2. Preliminary
testing of electron dynamics has been done against a GA version of gks, with satisfactory
agreement for collisionless drift waves, trapped electron modes, and collisional drift waves
up to and including the resistive ballooning branch.

Nonlinear results Without profile variation, linear growth rates are independent
of ρ∗ and mode widths scale as ρs. This leads inexorably to gyroBohm scaling (in the
infinite-radial-domain limit) of the diffusivity χgB = ρ∗χBohm, where χBohm is the Bohm-
scaled diffusivity. When the equilibrium profiles vary within the simulation domain, a
shearing in the local mode phase velocity occurs, causing a reduction in turbulence levels.
When shear rates become comparable to linear growth rates, we also expect gyroBohm
scaling to be violated. Since the shear rates in the tokamak core are typically weak,



Figure 2: Linear growth rates (left) and frequencies (right) for cyclone base case. Solid curve
shows gyro results, boxes show gs2 values.

breaking of gyroBohm scaling is expected only sufficiently close to the linear instability

Figure 3: Radial profiles used to
demonstrate breaking of gyroBohm
scaling.

threshold. To tackle the problem of profile variation,
we have devised “two-domain” nonperiodic BCs which
allow code operation in a radial annulus with arbitrary
profile variation. The distribution functions are forced
to be strongly evanescent outside domain 1, and the
fields strongly evanescent outside domain 2. Typically,
domain 2 must be up to ten gyroradii wider than do-
main 1, which means that the potential is solved on a
larger radial grid than the distributions. Raleigh damp-
ing of axisymmetric flows (n = 0) near the domain
1 boundary is also used to inhibit the development of
shear layers. We emphasize that, in the absence of pro-
file variation, simulations with these BCs give the same
thermal diffusivity as periodic flux-tube BCs.

First, a flux-tube run with [R/a=3.0,r/a=0.5,q=2, s=1,R/Ln=3.0,R/LT =9.0] (high
above threshold) was made. We find χ ' 3.2 so long as the domain size is greater than
about 80 ion gyroradii. Introducing the radially-varying profiles of Fig. 4 (flux-tube values
are indicated by dots), we see profile-shear-induced transport reduction but with scaling
quite close to gyroBohm (Fig. 4a): χ/(ρ2

scs/a) ∼ 1. Moving closer to the instability
threshold, conversely, we find Bohm-like scaling (Fig. 4b): χ/(ρ2

scs/a) ∼ a/ρs. These
results are discussed further in [5]

Finally, we have done preliminary simulations with kinetic electrons. For a fixed
grid size, the computational time is about a factor of 10 greater for kinetic electrons
than for adiabatic ones. Fig. 5 shows that kinetic but highly collisional electrons, with
(a/cs)νei = 2.0, give an ion thermal diffusivity not much higher than the cyclone base
case. The simulation box for these cases is 100 ion gyroradii wide. We also remark that
(due to time constraints) all three cases were run at relatively small numerical grid density,
and so the absolute diffusivities are slightly smaller than the fully-converged values.



Figure 4: Simulations with profile variation showing (left) gyroBohm scaling far above threshold,
(right) Bohm-like scaling closer to threshold.

Figure 5: Comparison of ion thermal diffusivities (left) for adiabatic, collisionless and collisional
electrons, and poloidal snapshot of electron density fluctuations (right) with collisions
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