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Introduction

� Need more wide-bandwidth diagnostics to understand disruptions better.

� AXUV photodiodes allow fast measurement of radiated power
→ DISRAD disruption radiometer diagnostic.

Experimental setup

� Results from single-chord diagnostic aid design of diag. with full poloidal view.

� Optical filtering provides info to account for detector response curve.

Analysis

� Tangential VUV survey spectrometer (SPRED) also provides needed info.

� DISRAD and SPRED data together are enough to assess importance of spectrum.

Results

� Current quench (CQ): Constant effective responsivity can be used.

� Thermal quench (TQ): Time scale of radiation is similar to time for energy loss.
� Quasi-steady: Effective responsivity less stable than CQ due to emission spectrum.
� Quasi-steady: DISRAD agrees quantitatively with bolometer.



Why DISRAD?

� Disruptions need to be understood/controlled for viability of tokamak

reactor concept

� Few high-speed diagnostics are available for study of disruptions (thermal

quench time ~10—4 s)

� AXUV photodiodes have been used in tokamaks for radiometric measurements

radiometric measurements (bolometry), e.g. TEXT, C—MOD

� Photodiodes offer sufficient bandwidth to time-resolve disruptions (metal foil

bolometers limited to ~10—2 s time scales)



AXUV Photodiode

Significant  radiation here

from quasi-steady plasma

Most radiation here

during disruption

� Vacuum compatible.

� Have been used for radiometry in
other fusion devices.3,4

� Advantage: wide bandwidth achievable.

� Problem: significant responsivity
variation over emitted spectrum in DIII–D.

To measure radiant power, ideally

want a sensor whose responsivity
is wavelength-independent over the

emitted spectrum.

Absolutely calibrated soft-x-ray/VUV

(AXUV) photodiodes1 are commercially

available.2



All results shown here are from single-chord  DISRAD-I

DISRAD-I aids design of multi-chord  DISRAD-II



Optical filtering provides spectral information

to take AXUV diode response curve into account
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Exploded view of detector flange assembly
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Analysis: Four energy bands are identified (A, B, C, D)

Quartz channel sees A only:

      IQ = SA TQA PA

Photocurrent Filter

transmittanceResponsivity

Radiant

power

MgF2 channel sees A & B only:

     IM = SATMAPA + SBTMBPB

Unfiltered channel sees A, B, C, D:

      IV = SAPA + SBPB + SCPC + SDPD

Note only 3 eqs for 4 powers!

Assumptions to close system discussed below.

SPRED domain
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� in band A, CIV (8.0 eV)

is dominant

� in band B, Lα (10.2 eV)

is dominant



Core SPRED VUV spectrometer aids interpretation

in a 
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DISRAD

� Spectrum used as weighting function

for averaging response curve in

C band:

� SPRED has tangential view, different

from DISRAD.

� Like DISRAD, SPRED chord passes

through core plasma.

� SPRED photon energy domain is

from 11 eV to 150 eV.

� Integration time is typically 1 ms

or 5 ms (provides a few spectra

in a disruption).



CURRENT QUENCH CASE

No D-band radiation (plasma too cold):

PD = 0 so find PA, PB, PC

QUASI-STEADY CASE

Can use C-band power from SPRED

 PC given so find PA, PB, PD

THERMAL-QUENCH CASE

Transition from hot to cool plasma.

Too fast for spectral decomposition.

Deduce brightness by assuming value

of  Seff = IV / Ptotal

Assumptions for spectral decomposition 

depend on case



Disruption Current Quench phase (CQ):

Bands A and B account for large fraction of radiation

IV

IM

IQ

� No deflection on blind channel

⇒ signals due to optical

radiation only.

� Peak photocurrents correspond

to ~106 photons/µs

⇒ no statistics concerns 

� Channels M and Q comparable

to channel V

⇒ large fraction of

radiation is in A and B



Current quench: little radiation above 20 eV

Spectrum is used as a weighting function to average

the responsivity in the C band: 

 

In current quench, SC is generally close to 0.12 A/W.
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Current quench: Seff is ~constant

Areas under DISRAD

and bolometer curves

agree well.

Effective responsivity is stable throughout CQ:  Seff = 0.12 A/W.



Thermal quench: DISRAD provides appropriate time resolution

Te

Results above are from same shot as CQ results.

Decay time of 0.13 ms observed in both:

� Brightness measured by DISRAD

� Electron temperature (ECE)



Quasi-steady plasma: A and B bands less important than in CQ 

IV

IM

IQ

� M and Q signals weak compared to V channel

(most radiation in C and D band).



Quasi-steady plasma: DISRAD in agreement with bolometer

Quasi-steady plasmas are only

~10-2 as bright as disruptions.

Agreement with equivalent

bolometer channel is within ~10% 

over much of the discharge,

with Seff ≈ 0.18 A/W

(Seff determined independent 

of bolometer).

Discrepancy early in discharge is 

attributed to noise in photocurrent

signals.  Techniques to improve

signal-to-noise in these (relatively)

dim plasmas are being developed.

Seff less stable than in CQ because

much radiation is in C band, where

responsivity curve varies strongly.



Conclusions

� Need more wide-bandwidth diagnostics to understand disruptions better.

� AXUV photodiodes allow fast measurement of radiated power

→ DISRAD disruption radiometer diagnostic

� Results from single-chord diagnostic aid design of diag. with full poloidal view.

� Optical filtering provides info to account for detector response curve.

� Tangential VUV survey spectrometer (SPRED) also provides needed info.

� DISRAD and SPRED data together are enough to assess importance of spectrum.
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� Current quench (CQ): Constant effective responsivity can be used.

� Thermal quench (TQ): Time scale of radiation is similar to time for energy loss.

� Quasi-steady: Effective responsivity less stable than CQ due to emission spectrum.

� Quasi-steady: DISRAD agrees quantitatively with bolometer.
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