

Fast time-scale radiometry of DIII-D disruptions

D.S. Gray, S.C. Luckhardt, E. Hollmann, A.G. Kellman,* L. Chousal, G. Gunner

Fusion Energy Research Program, University of California, San Diego *General Atomics, San Diego, California

27th EPS Conference on Controlled Fusion and Plasma Physics Budapest, June 2000

Outline

Introduction

- Need more wide-bandwidth diagnostics to understand disruptions better.
- AXUV photodiodes allow fast measurement of radiated power
 → DISRAD disruption radiometer diagnostic.

Experimental setup

- Results from single-chord diagnostic aid design of diag. with full poloidal view.
- Optical filtering provides info to account for detector response curve.

Analysis

- Tangential VUV survey spectrometer (SPRED) also provides needed info.
- DISRAD and SPRED data together are enough to assess importance of spectrum.

Results

- Current quench (CQ): Constant effective responsivity can be used.
- Thermal quench (TQ): Time scale of radiation is similar to time for energy loss.
- Quasi-steady: Effective responsivity less stable than CQ due to emission spectrum.
- Quasi-steady: DISRAD agrees quantitatively with bolometer.

Why DISRAD?

- Disruptions need to be understood/controlled for viability of tokamak reactor concept
- Few high-speed diagnostics are available for study of disruptions (thermal quench time ~10-4 s)
- AXUV photodiodes have been used in tokamaks for radiometric measurements radiometric measurements (bolometry), e.g. TEXT, C—MOD
- Photodiodes offer sufficient bandwidth to time-resolve disruptions (metal foil bolometers limited to ~10⁻² s time scales)

AXUV Photodiode

To measure radiant power, ideally want a sensor whose **responsivity** is wavelength-independent over the emitted spectrum.

Absolutely calibrated soft-x-ray/VUV (AXUV) photodiodes¹ are commercially available.²

- Vacuum compatible.
- Have been used for radiometry in other fusion devices.^{3,4}
- Advantage: wide bandwidth achievable.
- Problem: significant responsivity variation over emitted spectrum in DIII–D.

Most radiation here

during disruption

All results shown here are from single-chord **DISRAD-I**

DISRAD-I aids design of multi-chord **DISRAD-II**

Optical filtering provides spectral information to take AXUV diode response curve into account

Exploded view of detector flange assembly

Analysis: Four energy bands are identified (A, B, C, D)

Assumptions to close system discussed below.

Core SPRED VUV spectrometer aids interpretation

 Spectrum used as weighting function for averaging response curve in C band:

$$S_C = \frac{{}_C I(E)S(E)dE}{{}_C I(E)dE}$$

- SPRED has tangential view, different from DISRAD.
- Like DISRAD, SPRED chord passes through core plasma.
- SPRED photon energy domain is from 11 eV to 150 eV.
- Integration time is typically 1 ms or 5 ms (provides a few spectra in a disruption).

Assumptions for spectral decomposition depend on case

CURRENT QUENCH CASE No D-band radiation (plasma too cold): $P_D = 0$ so find P_A , P_B , P_C

QUASI-STEADY CASECan use C-band power from SPRED P_C givenso find P_A , P_B , P_D

THERMAL-QUENCH CASE Transition from hot to cool plasma. Too fast for spectral decomposition. Deduce brightness by assuming value of $S_{eff} = I_V / P_{total}$

Disruption Current Quench phase (CQ): Bands A and B account for large fraction of radiation

- No deflection on blind channel
 ⇒ signals due to optical radiation only.
- Peak photocurrents correspond to ~10⁶ photons/µs ⇒ no statistics concerns
- Channels M and Q comparable to channel V
 ⇒ large fraction of radiation is in A and B

Current quench: little radiation above 20 eV

Spectrum is used as a weighting function to average the responsivity in the C band: $S_C = \frac{c}{C} \frac{I(E)S(E)dE}{I(E)dE}$ In current quench, S_C is generally close to 0.12 A/W.

Current quench: S_{eff} is ~constant

Effective responsivity is stable throughout CQ: $S_{eff} = 0.12 \text{ A/W}$.

Thermal quench: DISRAD provides appropriate time resolution

Results above are from same shot as CQ results.

Decay time of 0.13 ms observed in both:

- Brightness measured by DISRAD
- Electron temperature (ECE)

Quasi-steady plasma: A and B bands less important than in CQ

• M and Q signals weak compared to V channel (most radiation in C and D band).

Quasi-steady plasma: DISRAD in agreement with bolometer

S_{eff} less stable than in CQ because much radiation is in C band, where responsivity curve varies strongly.

Quasi-steady plasmas are only $\sim 10^{-2}$ as bright as disruptions.

Agreement with equivalent bolometer channel is within ~10% over much of the discharge, with $S_{eff} \approx 0.18$ A/W (S_{eff} determined independent of bolometer).

Discrepancy early in discharge is attributed to noise in photocurrent signals. Techniques to improve signal-to-noise in these (relatively) dim plasmas are being developed.

Conclusions

Introduction

- Need more wide-bandwidth diagnostics to understand disruptions better.
- AXUV photodiodes allow fast measurement of radiated power
 → DISRAD disruption radiometer diagnostic

Experimental setup

- Results from single-chord diagnostic aid design of diag. with full poloidal view.
- Optical filtering provides info to account for detector response curve.

Analysis

- Tangential VUV survey spectrometer (SPRED) also provides needed info.
- DISRAD and SPRED data together are enough to assess importance of spectrum.

Results

- Current quench (CQ): Constant effective responsivity can be used.
- Thermal quench (TQ): Time scale of radiation is similar to time for energy loss.
- Quasi-steady: Effective responsivity less stable than CQ due to emission spectrum.
- Quasi-steady: DISRAD agrees quantitatively with bolometer.