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OVERVIEW

� H–mode plasmas have been produced by injecting frozen deuterium pellets into
L–mode plasmas in DIII–D
— Pellets injected from the low field, outside edge of the plasma and from the

high field, inside plasma edge were both able to produce H–mode plasmas
— The radial extent of pellet deposition is not important. The production of a

steep edge density gradient is important

� The large influx of particles at the plasma edge from the pellet leads to
substantial reductions in the edge electron and ion temperatures. The lowered
temperatures are still conducive for the formation of the H–mode transport barrier
— A critical edge temperature is not necessary in these H–mode transitions

� Pellet induced H–modes have LH transitions at plasma parameters far below
theoretical predictions

� The power threshold for the H–mode transition is reduced by about 2.4 MW
(about 30%) using pellet injection
— Pellets produced H–mode plasmas at lower input power than reference

plasma discharges without pellets, which stayed in L–mode throughout
beam heating even in the presence of strong sawteeth



�  A key issue for the physics of H–mode plasmas is to determine which plasma
quantities are critical for the formation of the edge transport barrier

�  One approach is to directly perturb the edge plasma conditions and observe the
subsequent changes to key edge parameters at the H–mode transition

�  One hypothesis for the H–mode transition is that the attainment of a critical edge
electron temperature is required for the H–mode transition

�  Injection of frozen deuterium pellets:

�  Pellet induced H–mode transitions can be accurately preset in time (i.e. the pellet
injection time) so that key fluctuation and profile diagnostic systems can be
concentrated about that time

�  Perturbation to the edge plasma condition by pellet injection provides for
quantitative comparisons between experimental conditions and theoretical
predictions from H–mode transition theories
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— This can be directly tested using pellet injection

— Can trigger H–mode transitions

— Dramatically changes the edge electron density and temperature
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EXPERIMENTAL SETUP

� An unbalanced, double-null diverted discharge with the ∇B drift away
from the dominant X–point was investigated
— High H–mode power threshold
— Clear, steady-state L–mode conditions
— Pellets were launched from the inside wall, from an upper vertical

port and from the outside wall of the vessel

� Operational parameters
— Plasma current, Ip = 1.6 MA
— Toroidal magnetic field, BT = 1.8–2.1 T
— Target electron density, ne = 3.0–4.0×1019 m–3

— Auxiliary heating power (NBI) = 4.9–9.2 MW
— Safety factor:  on-axis, q(0) ≈ 1.0

                         edge, q95 = 3.3–3.4
— Elongation, κ = 1.63–1.71
— Upper triangularity, δupp = 0.70–0.85
— Lower triangularity, δlow = 0.28–0.29



PELLETS WERE LAUNCHED FROM THE 
LOW FIELD SIDE OR HIGH FIELD SIDE OF DIII–D
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� Outside wall launched pellets (low field side)
were shattered prior to entry into plasma
in order to minimize pellet penetration⇒
predominantly edge density perturbation

� Type:  solid deuterium 
Pellet size:  2.7 mm
Rep rate:  up to 10 Hz
Speed:  100–350 m s–1

Speed for Specific Shots:

Shot
99559 314, 194 and 160 m s–1

(shattered pellets – outside launch)
100162 222 m s–1 (inside launch)
100170 235 m s–1 (inside launch)

Inside Wall
Launch

Top Launch

(High field 
side)

(Low field 
side)

Shot 99559

Outside
Launch
Pellet
(Shattered)



PELLET INDUCED H–MODE (PIH–MODE) TRANSITION 
PRODUCED BY A LOW FIELD SIDE PELLET
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�  A critical edge temperature is not required for the H–mode transition
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THE INCREASE IN THE EDGE ELECTRON 
PRESSURE PEDESTAL AND GRADIENT CLEARLY 

SHOWS THE TRANSITION TO H–MODE
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BOTH THE EDGE ION TEMPERATURE AND TOROIDAL
ROTATION ARE SIGNIFICANTLY REDUCED AFTER PELLET INJECTION
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Ion Temperature Profiles

Shot 99559
10 ms before pellet
4 ms after pellet
After L–H transition
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� Pellet injection time = 4258 ms � Integration time = 5 ms

1.00.90.8
ρ

0.70.6

ELM-free phone
Between ELMs



A GRADIENT IN THE EDGE Er IS ESTABLISHED AFTER
PELLET INJECTION AND IS MAINTAINED INTO THE H–MODE

� The Er measurement is averaged over 5 ms integration time
� Need higher time resolution (1-2 ms) to determine fast changes in Er
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�  Tanhfit analysis is used 
     to determine edge local parameters

EDGE ION TEMPERATURE PEDESTAL AND GRADIENT
INCREASE INTO THE H–MODE
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�  PIH–mode at PNBI = 6.8 MW (shot 99559) 

�  Discharge with no pellet stays in L–mode even at higher PNBI = 9.2 MW (shot 99573)



EDGE LOCAL PARAMETERS DETERMINED FROM TANHFIT ANALYSIS
CLEARLY SHOW THE TRANSITION TO H–MODE WITH PELLET INJECTION
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*Spatial measurements are along the laser path in the z-direction, not at the midplane

�  A critical ∇ne of between 3-5×1020 m–4 is required for the H–mode transition
(≡6-10 ×1020 m–4 at midplane) 



�  Rogers et al. (Proc. 17th IAEA Fusion Energy Conf., Yokohama, Japan, 1998,
paper IAEA-CN-69/THP2/01). Based on 3–D simulations of the Braginskii equations

081–00/PG/wj

THE EXPERIMENTAL RESULTS WERE COMPARED
WITH THREE MODELS OF THE H–MODE
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αMHD ≈
2µ0 q95 κ1/2 a rxpt (2000 P/LP)

R0 | BT  | dψ/dR
αDIAM = ( )Lpi,e

 ρs cs ( )L0

  t0

Transport is suppressed for αMHD > 0.5 and αDIAM > 0.5 (for DIII–D)∼  ∼  

�  Pogutse et al. (Proc. 24th EPS Conf., 1997, paper P3-1041). Based on stabilization of
Alfven waves parameterized in terms of normalized beta, βN, and the normalized
collision frequency, νn

βN = ( )me

 mi

B0

  4π n0 T0e 
1/2

′

2 k|| χ0p

  1 ; νn = ( )me

 mi
λe k||

  χ0p 
1/4 1/2

1/2

2



�  Wilson et al. (Proc. 17th IAEA Fusion Energy Conf., Yokohama, Japan, 1998,
paper IAEA-F1-CN-69/TH3/2). Based on stabilization of peeling modes at
collisionality > 1 parameterized in terms of αMHD and ν*
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THE EXPERIMENTAL RESULTS WERE COMPARED
WITH THREE MODELS OF THE H–MODE (Continued)
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∼  

Transport is reduced when αMHD  > 0.5 and ν*  > 1∼  ∼  

Transport is suppressed when βN > βCRIT = 1 +  νn 
2/3

χ0p characterizes the pressure gradient scale length,

 k|| is the parallel wavenumber,

λe is the mean free path



PELLET INDUCED H–MODES HAVE L-H TRANSITIONS AT PLASMA
PARAMETERS FAR BELOW THEORETICAL PREDICTIONS
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Wilson et al. Proc. 17th IAEA 
Fusion Energy Conf. Yokohama, Japan 1998, 

paper IAEA-F1-CN-69/TH3/2
Pogutse et al. Proc. 24th EPS

Conf. 1997 (P3-1041)
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THE POWER REQUIRED TO ACCESS H–MODE IS REDUCED BY 
AT LEAST 2.4 MW INJECTED POWER USING PELLET INJECTION
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PIH–MODE TRANSITION PRODUCED BY HIGH FIELD SIDE
LAUNCHED PELLET (PNBI = 6.7 MW)
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THE HFS PELLET PENETRATES MUCH FURTHER INTO THE 
PLASMA INTERIOR, BUT STILL PRODUCES A SIGNIFICANT 

DENSITY GRADIENT AT THE PLASMA EDGE
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FAST DITHERING OR BURSTING OF FLUCTUATION
APPEAR ~10 ms AFTER PELLET INJECTION
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EDGE TURBULENCE DURING PELLET-INDUCED H–MODE TRANSITION
�  Beam Emission Spectroscopy measurements show different stages of

transition behavior (0 < k < 3 cm–1, 2 ≤ f ≤ 200 kHz, ρ = 0.93)
 
�  Power spectra condenses to low frequency after pellet injection

— Integrated power remains nearly the same
 
�  H–mode phase shows markedly reduced fluctuation level

(2 orders of magnitude reduction in power)
Frequency-filtered time evolution Spectral Power Comparison

ρ = 0.93

1) Pre-pellet L–mode phase (moderate fluctuations)
2) Post-pellet,  L–mode → dithering phase (lower frequency fluctuations, dithers) 

  

3) H–mode (very low fluctuation level)
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PIH–MODE TRANSITION PRODUCED BY A HIGH FIELD
SIDE PELLET AT REDUCED NBI POWER (PNBI = 4.9 MW)
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SUMMARY

� H–mode plasmas have been directly produced by injecting frozen deuterium
pellets into L–mode plasmas
— Pellets injected from the low toroidal field side and high field side were both able

to produce H–mode transitions
— The production of a steep edge density gradient is important, and not the radial

extent of pellet deposition

� The edge electron and ion temperatures are substantially reduced by the large
influx of particles from the pellet
— The H–mode transition still occurs at the lowered temperatures
— A critical edge temperature is not necessary in these H–mode transitions

� Pellet induced H–modes have LH transitions at plasma parameters far below
theoretical predictions

� Just after pellet injection, the edge fluctuations exhibit fast dithering or bursting
behavior before steady H–mode conditions are achieved
— Similarly, fluctuation bursting is observed in transitions to VH–mode plasma and

plasmas with internal transport barriers
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SUMMARY (Continued)

� The shear in the edge Er increases gradually during the period of
fluctuation bursts
— Er measurement is averaged over bursts so cannot determine fast changes in Er
— Future experiments will have increased time resolution

� The power threshold is reduced by about 2.4 MW injected power (about 30%) using
pellet injection
— Pellets produced H–mode plasmas at lower input power than reference plasma

discharges without pellet
— Reference plasma discharges without pellets stayed in L–mode throughout

the applied neutral beam heating even in the presence of strong sawteeth and
higher NBI power


