H-MODE EDGE-DRIVEN INSTABILIES AS LOW-n KINK/BALLOONING MODES

J.R. Ferron, L.R. Baylor,* M.S. Chance,[†] M.S. Chu, G.L. Jackson, L.L. Lao, M. Murakami,* T.H. Osborne, P.B. Snyder, E.J. Strait, A.D. Turnbull, M.R. Wade* General Atomics, San Diego, CA * Oak Ridge National Laboratory [†] Princeton Plasma Physics Laboratory

Presented at 27th EPS Conference on Controlled Fusion and Plasma Physics June, 12-16 2000 Budapest, Hungary

EXPERIMENTAL AND THEORETICAL EVIDENCE POINTS TO LOW-n KINK/BALLOONING MODES AS THE CAUSE OF TYPE I ELMs IN TYPICAL DIII-D DISCHARGES

- Physics model for edge stability threshold:
 - Instability driven by pressure gradient and associated bootstrap current in the H–mode edge pedestal region
 - High-n ballooning mode second stability regime access aided by the bootstrap current
 - $-P_{edge}^{'}$ increases above the ballooning mode first regime limit unitl low-n kink/ballooning mode triggered
- Experiment: change parameters that the model predicts are keys to the edge stability physics
 - Discharge shape: triangularity, squareness
 - Edge P': pellet injection
- The instability character can be modified: amplitude, frequency
 - Support for the edge stability physics model is obtained

THE H-MODE EDGE TRANSPORT BARRIER CONFIGURATION PROVIDES THE DRIVE FOR INSTABILITY

- Edge pedestal: large pressure change in a narrow region
- Free energy for edge localized modes (ELMs)
 - Large P_{edge}
 - Bootstrap current (J_{edge})

ELMs IMPACT THE DISCHARGE IN BOTH NEGATIVE AND POSITIVE WAYS

- ELM perturbations inhibit internal barrier formation
 - Core momentum density decreases after ELMs begin
- Other detrimental effects:
 - Divertor heat pulses
 - Neoclassical tearing mode seed islands
- Pedestal height is correlated with confinement
 - "Stiff" transport models
- ELMs help control electron and impurity densities
- These are "Type I" ELMs

THEORY AND EXPERIMENT EXHIBIT THE FEATURES OF A MODEL OF TYPE I ELMs AS LOW-n CURRENT/PRESSURE DRIVEN INSTABILITIES

- ELM is the highest n-mode without 2nd regime access
- High squareness: no 2nd regime access
- Shape changes toward easier 2nd regime access (squareness, triangularity)⇒
 - Higher P_{édge} (factor 2–3)
 - Larger ELM amplitude
 - Factor 100 lower frequency
 - Infer lower n
 - Theory: n_{2nd} decreases
 - Theory: P_{edge} threshold decreases with n

HIGH SQUARENESS SHAPES ARE NOT EXPECTED TO HAVE SECOND STABLE REGIME ACCESS

• Low poloidal field at the "corners" weights the bad curvature regions

• $\delta_2 = \text{squareness} (\mathbf{R}(\theta) = \mathbf{R}_0 + a \cos(\theta + \sin^{-1} \delta \sin \theta), \mathbf{Z}(\theta) = \kappa a \sin(\theta + \delta_2 \sin 2\theta))$

CHANGE IN BALLOONING 2nd REGIME ACCESSIBILITY IS INDICATED BY CHANGES IN ELM FREQUENCY AND AMPLITUDE

• At sufficiently high squareness:

SAN DIEGO

Abrupt: only a small shape

SHIFT IN 2nd STABLE REGIME ACCESS OBSERVED AT CONSTANT DISCHARGE SHAPE

- J evolution after H-mode transition
- Shape marginal for second regime access
- Changes to note:
 - ELM frequency
 - T_e perturbation
 - Pressure gradient

WITH NO 2nd REGIME ACCESS, OBSERVED ELMs SHOULD HAVE THE LARGEST n WITHOUT FINITE LARMOR RADIUS STABILIZATION

- FLR averaging stabilizes modes with $k_{\perp}\rho_i > 0.5$
- High squareness, without second regime access:
 - Small, but still discrete, ELMs
- Finite-n corrections to infinite-n theory give the P[']_{edge} threshold at intermediate n values
- BALMSC code (M.S. Chu, M.S. Chance)

INTERMEDIATE-n MODES CAN HAVE A 2nd REGIME OF STABILITY

- Evaluated for high aspect ratio, shifted circle equilibria
- Magnetic well parameter (d_m) models the expected effect of shape changes
- Minimum value of n with 2nd regime access should depend on discharge shape

• Results of H.R. Wilson, R.L. Miller, Phys. Plasmas <u>6</u>, 873 (1999) extended by P. Snyder

MODE WITH THE LARGEST n WITHOUT 2nd STABLE REGIME ACCESS WILL HAVE THE LOWEST P_{edge}^{\prime} STABILTY THRESHOLD

- Calculated P_{edge} threshhold decreases with toroidal mode number
- Fixed, medium squareness (δ_2 = 0.05) shape, wall radius = 1.5 α , GATO code

Calculated Stability Threshhold (Full Geometry)

MEASURED P'_{edge} SCALES WITH DISCHARGE SHAPE LIKE THE PREDICTED THRESHOLD FOR n = 5 IDEAL, KINK/BALLOONING MODES

SAN DIEGO

THE *P*[']_{edge} STABILITY THRESHOLD IS REDUCED AS THE PEDESTAL WIDTH INCREASES

- Results from averaging of *P'* and *J* profiles by a long wavelength (low n) mode
- *P*'_{edge} threshold is reduced to close to ballooning 1st regime limit

ELMing PHASE CAN BE INITIATED BY INJECTING A DEUTERIUM PELLET TO INCREASE P'edge

SAN DIEGO

342-99 jy

MEASURED MAGNETIC FLUCTUATIONS ACCOMPANYING TYPE I ELMs HAVE SHOWN IDEAL INSTABILITIES WITH 2 \leq n \leq 9

- Rapid growth rate indicates an ideal MHD instability
- Clear mode number measurement is relatively rare
- Infer mode number changes from changes in amplitude and frequency

THE BEST MATCH OF THE DISTINGUISHING FEATURES IN BOTH EXPERIMENT AND THEORY IS TO LOW-n MODES

- ELM character responds to a change in second stability regime accessibility. Demonstrates the character of ELMs generated by high–n modes
 - With second regime access: low frequency, large amplitude ELMs
 - Without second regime access: high frequency, small amplitude ELMs
- With second stability regime access: measured P'_{edge} and calculated low-n stability threshold well above infinite-n limit
- Observed *P*[']_{edge} scales with shape (squareness and triangularity)
 - Similar to scaling of calculated low–n threshold
 - Little change with shape in calculated infinite-n threshold
- Observed and calculated dependence of P'_{edge} threshold on pedestal width
 - Low-n mode averages the profile over a large radial region
 - Infinite-n mode depends on local parameters

