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EXPERIMENTAL AND THEORETICAL EVIDENCE POINTS TO LOW–n
KINK/BALLOONING MODES AS THE CAUSE OF TYPE I ELMs

IN TYPICAL DIII–D DISCHARGES
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�  Physics model for edge stability threshold:

′

—  Instability driven by pressure gradient and associated bootstrap current in the
 H–mode edge pedestal region

—  High-n ballooning mode second stability regime access aided by the bootstrap
 current

—  Pedge increases above the ballooning mode first regime limit unitl low-n
 kink/ballooning mode triggered

�  Experiment:  change parameters that the model predicts are keys to the edge
stability physics

—  Discharge shape:  triangularity, squareness
—  Edge P  :  pellet injection′

�  The instability character can be modified:  amplitude, frequency

—  Support for the edge stability physics model is obtained
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THE H–MODE EDGE TRANSPORT BARRIER CONFIGURATION
PROVIDES THE DRIVE FOR INSTABILITY
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�  Free energy for edge localized
modes (ELMs)
—  Large Pedge
—  Bootstrap current (Jedge)
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ELMs IMPACT THE DISCHARGE IN BOTH
NEGATIVE AND POSITIVE WAYS

� ELM perturbations inhibit internal
barrier formation
— Core momentum density

decreases after ELMs begin

� Other detrimental effects:
— Divertor heat pulses
— Neoclassical tearing mode

seed islands
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� Pedestal height is correlated with
confinement

� ELMs help control electron and
impurity densities

� These are “Type I” ELMs

— “Stiff” transport models
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THEORY AND EXPERIMENT EXHIBIT THE FEATURES OF A MODEL OF
TYPE I ELMs AS LOW-n CURRENT/PRESSURE DRIVEN INSTABILITIES

� ELM is the highest n–mode without 2nd regime access

� High squareness: no 2nd regime access

� Shape changes toward easier
2nd regime access (squareness, 
triangularity)⇒

— Higher Pédge (factor 2–3)

— Larger ELM amplitude

— Factor 100 lower frequency

— Infer lower n

— Theory: n2nd decreases

— Theory: Pédge threshold
  decreases with n
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HIGH SQUARENESS SHAPES ARE NOT EXPECTED
TO HAVE SECOND STABLE REGIME ACCESS

� Low poloidal field at the “corners” weights the bad curvature regions
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� δ2 = squareness (R(θ) = R0 + a cos(θ + sin–1 δ sin θ), Z(θ) = κa sin(θ + δ2 sin 2θ))
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�  At sufficiently high squareness:
—  ELM frequency increases a factor of 10
—  Te perturbations are not measurable
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CHANGE IN BALLOONING 2nd REGIME ACCESSIBILITY
IS INDICATED BY CHANGES IN ELM FREQUENCY AND AMPLITUDE
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�  Abrupt:  only a small shape
change required
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SHIFT IN 2nd STABLE REGIME ACCESS OBSERVED
AT CONSTANT DISCHARGE SHAPE

� J evolution after H–mode
transition

� Shape marginal for second
regime access

� Changes to note:
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— ELM frequency
— Te perturbation
— Pressure gradient
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�  FLR averaging stabilizes modes
with k⊥ρi > 0.5 
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WITH NO 2nd REGIME ACCESS, OBSERVED ELMs SHOULD HAVE
THE LARGEST n WITHOUT FINITE LARMOR RADIUS STABILIZATION
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�  High squareness, without second
regime access:
—  Small, but still discrete, ELMs

�  Finite-n corrections to infinite-n
theory give the Pedge threshold
at intermediate n values

�  BALMSC code (M.S. Chu, M.S. Chance)
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INTERMEDIATE-n MODES CAN HAVE A 2nd REGIME OF STABILITY
� Evaluated for high aspect ratio, shifted circle equilibria
� Magnetic well parameter (dm) models the expected effect of shape changes
� Minimum value of n with 2nd regime access should depend on discharge shape

� Results of H.R. Wilson, R.L. Miller, Phys. Plasmas 6, 873 (1999) extended by P. Snyder
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MODE WITH THE LARGEST n WITHOUT 2nd STABLE REGIME
ACCESS WILL HAVE THE LOWEST Pédge STABILTY THRESHOLD
� Calculated Pédge threshhold decreases with toroidal mode number
� Fixed, medium squareness (δ2 = 0.05) shape, wall radius = 1.5α, GATO code
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MEASURED Pédge SCALES WITH DISCHARGE SHAPE LIKE THE 
PREDICTED THRESHOLD FOR n = 5 IDEAL, KINK/BALLOONING MODES

� Squareness scan shows quantitative
agreement within 40% for similar
pedestal width

� Pedestal pressure also increases
with triangularity
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THE P ′edge STABILITY THRESHOLD IS REDUCED
AS THE PEDESTAL WIDTH INCREASES

� Results from averaging of P ′ and J profiles by a long wavelength (low n) mode
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� P ′edge threshold is reduced to close to ballooning 1st regime limit
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ELMing PHASE CAN BE INITIATED BY INJECTING
A DEUTERIUM PELLET TO INCREASE P′edge

� Time for the edge pressure
gradient to build to the ELM
threshold ⇒ delay between
pellet and first ELM

� Threshold = function (width)
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MEASURED MAGNETIC FLUCTUATIONS ACCOMPANYING TYPE I
ELMs HAVE SHOWN IDEAL INSTABILITIES WITH 2 ≤ n ≤ 9

� Rapid growth rate indicates an
ideal MHD instability

� Clear mode number measurement
is relatively rare

� Infer mode number changes from
changes in amplitude and frequency
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THE BEST MATCH OF THE DISTINGUISHING FEATURES IN BOTH
EXPERIMENT AND THEORY IS TO LOW–n MODES
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�  ELM character responds to a change in second stability regime accessibility.
Demonstrates the character of ELMs generated by high–n modes

—  With second regime access: low frequency, large amplitude ELMs
—  Without second regime access: high frequency, small amplitude ELMs

—  Similar to scaling of calculated low–n threshold
—  Little change with shape in calculated infinite–n threshold

�  With second stability regime access: measured P ′edge and calculated low–n
stability threshold well above infinite–n limit

�  Observed P ′edge scales with shape (squareness and triangularity) 

—  Low–n mode averages the profile over a large radial region
—  Infinite–n mode depends on local parameters

�  Observed and calculated dependence of P′edge threshold on pedestal width


