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EXPERIMENTAL AND THEORETICAL EVIDENCE POINTS TO LOW-n
KINK/BALLOONING MODES AS THE CAUSE OF TYPE | ELMs
IN TYPICAL DIil-D DISCHARGES

@ Physics model for edge stability threshold:
— Instability driven by pressure gradient and associated bootstrap current in the
H-mode edge pedestal region
— High-n ballooning mode second stability regime access aided by the bootstrap
current

— e’d e Increases above the ballooning mode first regime limit unitl low-n
kink/ballooning mode triggered

@ Experiment: change parameters that the model predicts are keys to the edge
stability physics
— Discharge shape: triangularity, squareness
— Edge P pellet injection

@ The instability character can be modified: amplitude, frequency
— Support for the edge stability physics model is obtained
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THE H-MODE EDGE TRANSPORT BARRIER CONFIGURATION
PROVIDES THE DRIVE FOR INSTABILITY
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ELMs IMPACT THE DISCHARGE IN BOTH
NEGATIVE AND POSITIVE WAY

® ELM perturbations inhibit internal ?(5) WWW
barrier formation 1.0- i
— Core momentum density 0.5 M h .
decreases after ELMs begin 0.0 - - -
® Other detrimental effects: 1019
— Divertor heat pulses . 0.41
— Neoclassical tearing mode E
seed islands gl

e 99
>0 !
— O™

® Pedestal height is correlated with

confinement _ 8

— “Stiff” transport models §§

® ELMs help control electron and g f
impurity densities =3 819

® These are “Type |I” ELMs 89%
0.87
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THEORY AND EXPERIMENT EXHIBIT THE FEATURES OF A MODEL OF
TYPE | ELMs AS LOW-n CURRENT/PRESSURE DRIVEN INSTABILITIES

ELM is the highest n-mode without 2nd regime access

High squareness: no 2nd regime access

Schematic of Ideal MHD Edge Instability Thresholds
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HIGH SQUARENESS SHAPES ARE NOT EXPECTED
TO HAVE SECOND STABLE REGIME ACCESS

® Low poloidal field at the “corners” weights the bad curvature regions
10—
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® 3§, =squareness (R(6) = Rg + a cos(0 + sin=1 & sin 0), Z(0) = ka sin( + 55 sin 20))
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CHANGE IN BALLOONING 2nd REGIME ACCESSIBILITY
IS INDICATED BY CHANGES IN ELM FREQUENCY AND AMPLITUDE

@ At sufficiently high squareness: ® Abrupt: only a small shape

— ELM frequency increases a factor of 10 change required
— T perturbations are not measurable

ELM Frequency (photodiode a.u.) Amplitude [edge T, (keV) from ECE]




SHIFT IN 2nd STABLE REGIME ACCESS OBSERVED
AT CONSTANT DISCHARGE SHAPE

® Jevolution after H-mode 0.25
transition

® Shape marginal for second
regime access

@ Changes to note: (1)28
— ELM frequency
— Te perturbation 1.10
— Pressure gradient
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WITH NO 2nd REGIME ACCESS, OBSERVED ELMs SHOULD HAVE
THE LARGEST n WITHOUT FINITE LARMOR RADIUS STABILIZATION

® FLR averaging stabilizes modes
with k  p;j> 0.5

@ High squareness, without second
regime access:
— Small, but still discrete, ELMs

® Finite-n corrections to infinite-n
theory give the Pe,dge threshold
at intermediate n values

® BALMSC code (M.S. Chu, M.S. Chance)
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INTERMEDIATE-n MODES CAN HAVE A 2nd REGIME OF STABILITY

@ Evaluated for high aspect ratio, shifted circle equilibria
® Magnetic well parameter (d,,) models the expected effect of shape changes
® Minimum value of n with 2nd regime access should depend on discharge shape
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@ Results of H.R. Wilson, R.L. Miller, Phys. Plasmas 6, 873 (1999) extended by P. Snyder
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MODE WITH THE LARGEST n WITHOUT 2nd STABLE REGIME
ACCESS WILL HAVE THE LOWEST Pgqge STABILTY THRESHOLD

® Calculated Pggqe threshhold decreases with toroidal mode number
® Fixed, medium squareness (o, = 0.05) shape, wall radius = 1.50, GATO code

Calculated Stability Threshhold (Full Geometry)
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MEASURED Pggge SCALES WITH DISCHARGE SHAPE LIKE THE

PREDICTED THRESHOLD FOR n =5 IDEAL, KINK/BALLOONING MODES

® Squareness scan shows quantitative

1.5

[10° Pa/(Wh/radian)]
>

ot
(3]

0.0

-0.2

agreement within 40% for similar

pedestal width
Scan of Discharge Squareness

: Pédge

I A / Modeled Case

Calculatedn=5
Threshold

High
ELMs

{\g—f

[ Ballopning 1§t Regirlne Limilt '

Frequency |

00 02 04 06

Squareness ()

Dili-D

NATIONAL FUSIOIII FACILITY

SAN

DIEG

0.8

@ Pedestal pressure also increases

with triangularity

Scaling with Triangularity
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THE Pedge STABILITY THRESHOLD IS REDUCED
AS THE PEDESTAL WIDTH INCREASES

@ Results from averaging of P’ and J profiles by a long wavelength (low n) mode

® Pgqge threshold is reduced to close to ballooning 1st regime limit
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ELMing PHASE CAN BE INITIATED BY INJECTING

A DEUTERIUM PELLET TO INCREASE Pedge
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@ Time for the edge pressure

gradient to build to the ELM
threshold = delay between
pellet and first ELM

@ Threshold = function (width)
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MEASURED MAGNETIC FLUCTUATIONS ACCOMPANYING TYPE |
ELMs HAVE SHOWN IDEAL INSTABILITIES WITH2<n <9
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THE BEST MATCH OF THE DISTINGUISHING FEATURES IN BOTH
EXPERIMENT AND THEORY IS TO LOW-n MODES

® ELM character responds to a change in second stability regime accessibility.
Demonstrates the character of ELMs generated by high-n modes

— With second regime access: low frequency, large amplitude ELMs
— Without second regime access: high frequency, small amplitude ELMs

® With second stability regime access: measured P’gqqge and calculated low-n
stability threshold well above infinite-n limit

® Observed Pgqqe Scales with shape (squareness and triangularity)
— Similar to scaling of calculated low-n threshold
— Little change with shape in calculated infinite-n threshold

® Observed and calculated dependence of Pgqge threshold on pedestal width

— Low-n mode averages the profile over a large radial region
— Infinite-n mode depends on local parameters
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