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Tokamak performance is strongly tied to the stability and transport properties of the edge
plasma. In many transport models, the height of the edge pressure “pedestal” essentially
determines overall plasma confinement. Theoretical analysis of edge instabilities which may
control the pedestal height and width is complex, in part because the sharp pressure gradients,
and consequent large bootstrap currents, near the H–mode edge can destabilize kink, peeling,
and ballooning modes over a wide range of toroidal mode numbers (n). Additional complica-
tions arise from separatrix geometries and non-ideal physics.

Ideal MHD stability studies of edge localized modes (ELMs) and experimentally observed
ELM precursors suggest an important role for instabilities in the intermediate range of mode
numbers (3 <~  n <~  30). Continuing improvements in algorithms and computation speed have
allowed low-n stability codes to treat a growing extent of the lower end of this range (n <~ 10)
[1]. Higher values of n have traditionally been studied via ballooning theory. An important
modification of classical ballooning theory has recently been developed, allowing proper
treatment of the coupled system of edge ballooning and peeling modes [2,3]. This edge bal-
looning formalism has been studied in both shifted circle and shaped local equilibrium
geometry [2,3,4], leading to the development of a model for the ELM cycle, and to insight
about the role of second stability in the edge region.

Here we solve the edge ballooning/peeling equations in general, nonlocal tokamak geome-
try, using an enhanced version of the ELITE code. The nonlocal equilibrium allows proper
treatment of both strongly edge-localized and more extended modes, for all plasma shapes. In
conjunction with low-n MHD codes, this allows the study of the ideal MHD edge stability of
real tokamak equilibria over essentially the full spectrum of toroidal modes. Important caveats
are that ELITE keeps only the dominant [up to O (n–2/3)] finite-n terms in the edge ballooning
expansion, and that both ELITE and most low-n codes do not cross the separatrix.

A series of H–mode experiments on the DIII–D tokamak exhibits a strong dependence of
edge localized mode (ELM) behavior on plasma shape [1,5]. Similar observations have been
made on other tokamaks and are summarized in Ref. [6]. Here we focus on a set of experi-
ments in which the squareness (δ2) of the plasma cross section is modified. At moderate val-
ues of 0.05 <~  δ2 <~  0.2, large infrequent ELMs are generally observed, together with a large
value of the edge pressure gradient. In sharp contrast, high squareness (δ2 ~ 0.5) discharges
generally produce low amplitude, high frequency ELMs, and smaller edge pressure gradients.

Low-n stability analysis has been carried out on a series of model equilibria designed to
closely match the experiment [1], using a procedure outlined in [7]. A hyperbolic tangent
pressure profile is employed in the edge region, with a maximum pressure gradient (p′) at
normalized poloidal flux ψ = 0.96. The edge current is set equal to the predicted bootstrap
current. Low-n modes (n  < 8) are found to be stable for the observed range of 2 <~
p′\(105 Pa/Wb) <~  3 for the high squareness, high frequency ELM cases. However, the mod-
erate squareness cases with large ELMs are observed to approach the low-n stability bound-
aries. Values of 5 <~  p′ <~  10 are observed, near the low-n stability boundaries for 5 <~  n <~
10 [1].
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Conventional infinite-n ballooning
analysis for a typical case is shown in
Fig. 1. While the high squareness edge
pressure gradient is up against the bal-
looning limit, the moderate squareness
edge has access to the second stability
regime, and its pressure gradient is ap-
parently not limited by ballooning
modes.

At the plasma edge, coupling of bal-
looning and peeling modes can be
important; in addition, finite-n effects
may play an important role for the
modes of interest (n <~  40). The peeling
mode[2,8] is a current-driven instability
localized near the plasma-vacuum
interface. Its stability is a strong function
of the proximity of the nearest vacuum
rational surface (where the safety factor
q = q0vac) to the plasma edge (q = qa),
quantified by ∆ = n (q0vac – qa). At small
values of ∆ , the peeling mode is
destabilized by an edge current density,
and its coupling to ballooning modes can
cut off access to the second stability
regime. This coupling has been studied
in an s–α geometry with shaping
modeled by a magnetic well parameter
d m  = D m  s2/α. With “poor” shaping
(small negative dm), the peeling and
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Fig. 1.  Measured edge pressure gradient, and
infinite-n conventional ballooning stability
boundaries (a) during high frequency ELMs in a
high squareness (δ2 = 0.5) discharge and
(b) during low frequency ELMs in a moderate
squareness case (δ2 = 0.2).

and ballooning modes strongly couple and prevent second stability access, while with larger
negative dm , second stability access is possible [3]. Peeling/ballooning coupling is also a
function of n, as shown in Fig. 2(a). Higher n modes decouple most easily, leading to the sup-
position that the most unstable mode is approximately the highest n without second stability
access (provided that n is low enough that it is not strongly stabilized by finite Larmor radius
effects). The coupling is a very strong function of shaping as illustrated in Fig. 2(b). Over a
very small range of dm values the plasma changes from having essentially no second regime
access to having access for all n >~  10.

For detailed comparisons to experiment, the edge ballooning equations must be solved in
realistic, non-local geometry. Here the same equilibria employed in the low-n study [1] are
evaluated for edge ballooning/peeling stability with the ELITE code. For the moderate
squareness case, no extended ballooning type instabilities are seen, even when p′ exceeds the
low-n threshold. A highly localized [Fig. 3(a)] peeling instability is seen only at very low val-
ues of ∆. The critical ∆ for this instability is only a very weak function of n and, as expected,
it scales with the normalized edge current (j||a/〈j〉) (Fig. 4). High-n modes are thus unstable in
this case only when nqa passes very near a rational value, and even then the mode is so
strongly localized to the edge that it is unlikely to have a significant impact.

For the high squareness case, a coupled peeling/ballooning instability is seen. The mode
has a predominant ballooning character, and extends over the entire high gradient region (ψ >~
0.94), as shown in Fig. 3(b).

These results support the following hypothesis regarding ELM character (similar to that
suggested in Ref. [1]). When the H–mode edge is unstable to extended ballooning-like modes



FULL SPECTRUM STABILITY ANALYSIS OF THE TOKAMAK EDGE REGION P.B. Snyder, et al.

GENERAL ATOMICS REPORT GA–A23427 3

2

0.640 0.642

3

0.644

4 5

0.646 0.648

6

0.650

7
0

2

4

6

Magnetic Well Parameter (–dm)

0

10

20

30

40

50

s 
(M

ag
ne

tic
 S

he
ar

)

n = 40

n = 40

n = 20

n = 10

Peeling Mode
Unstable

 Stable

 Stable

 Ballooning Unstable

α (Normalized Pressure Gradient)

Threshold Mode Number
for 2nd Stable Regime

Access

 2nd Regime

To
ro

id
al

 M
od

e 
Nu

m
be

r

 No 2nd Regime
Access

Access

 "Improved" Shaping

Fig. 2.  (a) Stability boundaries of s–α equi-
libria for coupled peeling/ballooning modes
at n =10,20,40, dm = –0.645. (b) Calculated
marginal value of n for second stability
access, as a function of the magnetic well
parameter (dm).

across the steep gradient region, turbulent
transport driven by these modes can, in
many cases, hold p′ below the low-n limit.
The high-n mode turbulence results in the
relatively steady fluctuations identified as
small, high-frequency ELMs. However, if
the equilibrium provides access to the sec-
ond stability regime for coupled peel-
ing/ballooning modes, the edge pressure
gradient can rise to large values. High-n
peeling modes may go unstable at small ∆,
but these do not extend far enough into the
plasma to relax p′, which will continue to
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Fig. 3.  Radial mode displacement (u) in:
(a) the moderate squareness case (δ 2 =
0.05), ∆ = 0.05, (b) the high squareness case
(δ2 = 0.5), ∆ = 0.05. x = m0vac – nq is a
measure of radial location which increases
from zero at the innermost vacuum rational
surface to ~40 at the top of the H–mode
pedestal.
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Fig. 4.  Critical value of ∆ for instability to
peeling modes, as a function of the pressure
gradient, using model equilibria with
squareness δ2 = 0.05, n = 15,20. Also shown
is the normalized edge current (j||a/〈j〉).

rise until a relatively low-n kink mode, with a mode structure extending across the pedestal, is
driven unstable. This radially extended, fast-growing mode rapidly destroys edge confine-
ment, resulting in a large ELM.
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This picture is consistent with nonlinear simulations of turbulence driven by ballooning
modes and their kinetic and resistive analogs [9–10] which find that these modes can evolve
into a saturated, turbulent state with large transport. However, the evolution of the current
profile is not well understood. It is possible that ballooning turbulence does not allow suffi-
cient current relaxation, resulting in the current build-up and crash model of ELMs proposed
in Ref. [2].

A number of other factors, including
non-ideal effects and separatrix geometry,
may impact ELMs, and nonlinear simula-
tions are ultimately needed to understand
the detailed evolution of ELMs and pro-
files in different regimes. These issues are
beginning to be explored via an extension
of the BOUT boundary turbulence
code[10]. BOUT evolves the nonlinear
electromagnetic Braginskii equations in
separatrix geometry, modeling both the
plasma edge and scrape-off layer. Parallel
current terms, which are likely to be im-
portant for a full understanding of ELMs,
have recently been added to the code, and
preliminary simulations with edge current
have been undertaken. Figure 5 shows the
structure of the electrostatic potential (φ)
in the linear phase of evolution, for a
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Fig. 5.  Contour plot of the electrostatic
potential vs. the normalized radial (x) and
poloidal coordinates, in the linear phase of
a BOUT simulation with current.

ballooning unstable equilibrium. The peaks in φ near the top and bottom of the machine
highlight the impact of X–point geometry on these modes.
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