DIII-D YEAR 2010 EXPERIMENT PLAN

by DIII-D RESEARCH TEAM

FEBRUARY 2010

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DIII-D YEAR 2010 EXPERIMENT PLAN

by DIII-D RESEARCH TEAM

Work supported by the U.S. Department of Energy under Cooperative Agreement No. DE-FC02-04ER54698

GENERAL ATOMICS PROJECT 30200 FEBRUARY 2010

FOREWORD

This document presents the planned experimental activities for the DIII-D National Fusion Facility for the fiscal year 2010. This plan is part of a five-year cooperative agreement between General Atomics and the Department of Energy. The Experiment Plan advances on the objectives described in the DIII-D National Fusion Program Five-Year Plan 2009–2013 (GA-A25889). The Experiment Plan is developed yearly by the DIII-D Research Council and approved by DOE. DIII-D research progress is reviewed quarterly against this plan. The 2010 plan is for 17 weeks of tokamak research operations, of which 3 weeks were supported with funds from the American Recovery and Reinvestment Act (ARRA) of 2009.

APPROVALS

Approved:	T.S. Taylor DIII-D Program Director	12 San 10 Date
	M.S. Foster On-site Program Representative DOE Office of Fusion Energy Sciences	1/25/10 Date
	E. Oktay DIII-D Program Manager DOE Office of Fusion Energy Sciences	3/1/2010 Date

DIII-D RESEARCH COUNCIL MEMBERS

2010 Campaign — October 2009 to April 2010

D.N. Hill (LLNL) (Chair)
C.M. Greenfield (Vice Chair)
M.E. Fenstermacher (LLNL) (Experiment Coordinator)
P. Gohil (Deputy Experiment Coordinator)

M.E. Austin (U Texas)	A.W. Leonard (GA)	P.B. Snyder (GA)
K.H. Burrell (GA)	T.C. Luce (GA)	E.J. Strait (GA)
R.J. Buttery (GA)	G.R. McKee (U. Wisc.)	E.A. Unterberg (ORNL)
J.R. Ferron (GA)	A. Nagy (PPPL)	M.A. Van Zeeland (GA)
A.M. Garofalo (GA)	R. Nazikian (PPPL)	M.R. Wade (GA)
E.M. Hollmann (UCSD)	P.I. Petersen (GA)	
D.A. Humphreys (GA)	C.C. Petty (GA)	Ex officio members:
T.C. Jernigan (ORNL)	R. Prater (GA)	V.S. Chan (GA)
A.G. Kellman (GA)	H. Reimerdes (Col. U.)	R.D. Stambaugh (GA)
L.L. Lao (GA)	T.L. Rhodes (UCLA)	T.S. Taylor (GA)
C.J. Lasnier (LLNL)	M.J. Schaffer (GA)	

2010 DIII-D PROGRAM ADVISORY COMMITTEE MEMBERS (Meeting: April 27–29, 2010)

Dr. Troy Carter (UCLA)

Dr. Valery Chuyanov (ITER, Caderache)

Dr./Prof. Ray Fonck (Univ. Wisconsin)

Dr. Martin Greenwald (MIT)

Dr. Rich Hawryluk (PPPL)

Dr./Prof. Chris Hegna (Univ. Wisconsin)

Dr. Yutaka Kamada (JAEA, Japan)

Dr. Stan Kaye (PPPL)

Dr. Alberto Loarte (ITER)

Dr. Jerome Pamela (EFDA)

Dr. George Sips (EFDA)

Dr. Nermin Uckan (ORNL)

Dr. James Van Dam (U Texas) (Chair)

Dr. Yuanxi Wan (ICPP)

Dr./Prof. Hartmut Zohm (IPP_Garching)

CONTENTS

FC	REW	ORD		iii
DI	II-D F	RESEA	RCH COUNCIL MEMBERS	vii
DI	II-D I	PROGR	AM ADVISORY COMMITTEE MEMBERS	vii
1.	SYN	OPSIS	OF THE 2010 DIII-D RESEARCH PLAN	1
	1.1.	Task F	Forces for 2010	18
		1.1.1.	Task Force on Rapid Shutdown Schemes for ITER	18
		1.1.2.	Task Force on Physics of Non-Axisymmetric Field Effects for	
			ITER	18
		1.1.3.	1	19
		1.1.4.	Task Force on Test Blanket Module Mockup	20
	1.2.	Physic	s Groups	21
			ITER Physics	21
		1.2.2.	Steady-State Integration	22
		1.2.3.	Fusion Science	23
		1.2.4.	Integrated Modeling	24
		1.2.5.	Plasma Control and Operations	25
		1.2.6.	Plasma Boundary Interfaces	25
	1.3.	Resear	ch Proposals Received	27
	1.4.	Detaile	ed List of Scheduled Experiments	28
	1.5.	The 20	010 Operations Schedule	33
AC	CKNC	WLED	GMENT	35
AF	PEN	DIX A:	2009–2010 RESEARCH PROPOSALS RECEIVED	. A-1

LIST OF FIGURES

Fig.	1. The 2010 Experimental campaign is organized into four tasks, the Torkil Jensen Award category, and 27 working groups within the physics groups of the Experimental Science Division	1
Fig.	2. The fractional allocation of 2010 Experimental campaign run time into the three primary areas of the DIII-D program shows continuation of DIII-D's strong commitment to ITER related physics research	14
Fig.	3. DIII-D master schedule 2010	34
	LIST OF TABLES	
I.	DIII-D conducted a number of experiments in 2009 in support of the International Tokamak Physics Activity (ITPA)	ϵ
II.	ITER urgent physics issues are a major focus for the DIII-D 2010 campaign	7
III.	Many experiments planned during 2010 will support the International Tokamak Physics Activity (ITPA)	8
IV.	Proposal statistics for the 2009–2010 campaign	12
V.	Run time allocations for the 2010 experiment campaign	13
VI.	Detailed list of scheduled experiments for the 2010 experiment campaign	28

1. SYNOPSIS OF THE 2010 DIII-D RESEARCH PLAN

The research campaign for 2010 is organized into the six physics groups making up the Experimental Science Division, with four additional task forces coordinated independently of that management structure (Fig. 1). Approximately 75% (47 days) of the time allocated in the 17-week experimental plan has been allocated to the physics groups, and their associated working groups. This reflects the broad base and scientific depth of the DIII-D experimental program. The remaining 25% (16 days) is allocated to the task forces, which are more narrowly focused on critical, shorter term, issues, and to the Torkil Jensen Award experiments. The Torkil Jensen Award, up to one day of experimental run time per proposal, was established prior to the 2009 campaign to encourage submission of proposals for experiments that are focused on new research topics with the potential for exploring transformational physics using very innovative techniques.

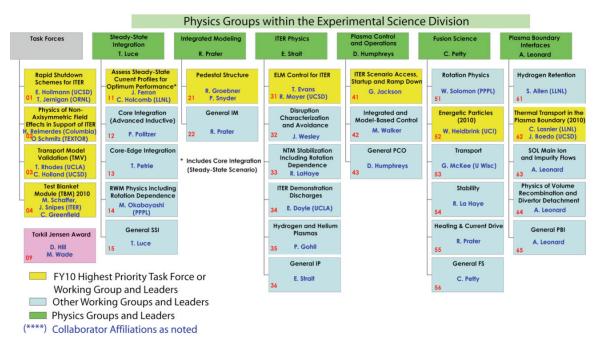


Fig. 1. The 2010 Experimental Campaign is organized into four task forces, the Torkil Jensen Award category, and 27 working groups within the physics groups of the Experimental Science Division. The task forces and working groups highlighted in yellow are considered high priority areas for the DIII-D program.

The four task forces and six working groups highlighted in yellow in Fig. 1 were identified by the Research Council as high priority research areas for the DIII-D program for the 2010 run campaigns. The other working groups, shown in blue, were added in

"bottom up" fashion through discussions within the physics groups. The high priority research areas are as follows:

- Rapid Shutdown Schemes for ITER. Reliable techniques for rapid and safe discharge termination would be of great benefit to ITER, especially over the next year during the licensing process. Research on this topic seeks to demonstrate methods for disruption mitigation (e.g., magnetic perturbations, shell pellets, shattered pellets, and massive gas injection) and support disruption modeling. This effort is organized as a task force under the Director of Experimental Science.
- Physics of Non-Axisymmetric Field Effects in Support of ITER. Resonant and non-resonant 3D magnetic fields are observed to have large effects on global plasma stability, edge localized modes, plasma rotation and confinement, and plasma-wall interactions in DIII-D and other tokamaks. There may be a common physical basis for many of these observations that could lead to better predictive capability (e.g. neoclassical toroidal viscosity). Experiments will seek improved understanding by comparing theoretical models (e.g., IPEC, MARS-F) to the measured response of the plasma to non-axisymmetric fields. This effort is organized as a task force under the Director of Experimental Science.
- Transport Model Validation. Continued improvements to simulation tools (e.g. TGLF and synthetic diagnostics for GYRO), plasma diagnostics (e.g., BES, PCI, and ECEI), and tokamak capabilities (e.g. ECH) enable better experiments aimed at the validation of theory-based transport and turbulence models. Work in this area seeks to build upon recent success by varying key plasma parameters (e.g., κ, ρ*, ∇Te) expected to affect local plasma turbulence. These experiments are coordinated as a task force reporting to the Director of Experimental Science.
- Test Blanket Module (TBM) Mockup. In response to requests from the ITER International Organization, the DIII-D program has designed and constructed a module for the 270 R-0 midplane port that can produce toroidal and poloidal perturbations to the outer midplane magnetic field that simulate a scaled version of the perturbations predicted to be generated by the ferromagnetic Test Blanket Modules (TBM) in ITER. The DIII-D TBM mockup contains both racetrack coils to produce toroidal field perturbation as well as an independently controllable solenoid coil to produce poloidal field perturbations. The work in the TBM task force for 2010 will focus on assessment of the effects of these perturbation fields on a broad spectrum of plasma performance including effects on H-mode confinement, L-H mode power thresholds, resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression, fast ion losses and locked mode thresholds. This effort is

- organized as a task force for the 2010 campaign reporting to the Director of Experimental Science.
- Assess Steady-State Current Profiles for Optimum Performance. The primary focus of these experiments will be the exploration of the effect of the *q*-profile on the bootstrap current and fully noninductive high-β operation utilizing the full complement of six gyrotrons at maximum power available in 2010. Other topics may include extending the duration of fully noninductive operation and examining H-mode confinement.
- **ELM Control for ITER**. Critical issues related to robust ELM control in ITER remain to be resolved. DIII-D is uniquely capable for this line of research due to its flexible set of perturbation coils, mix of co/counter neutral beam injection (NBI), and comprehensive diagnostics and analysis tools. Experiments will address specific issues in support of ITER design activities, with more fundamental physics experiments organized by the 3D field-effects task force. Topics of interest include (but are not necessarily limited to) RMP ELM suppression, pellet ELM pacing, QH-mode, and small ELM regimes. This working group is managed within ITER physics.
- ITER Scenario Access, Startup and Ramp Down. DIII-D experiments in FY09 successfully examined ITER scenario access-related issues such as L-H and H-L power thresholds, shape control and vertical stability limits during ramp-up and ramp down, ELM control, MHD stability, and current profile evolution using appropriately scaled parameters, but more work remains related to expanding access to additional scenarios. Experiments in FY10 seek to address optimization of low voltage startup and rampdown-related issues for high current ITER scenarios. Research here is organized as a working group in Plasma Control and Operations.
- Pedestal Structure. The edge-pedestal remains one of the largest unknowns for predicting ITER performance and ELM behavior. Experiments here will seek to test physics elements related to building models of the edge pedestal (e.g., EPED1, TEMPEST, or XGC0) through systematic parameter scans in plasmas optimized for edge-pedestal measurements, both with and without RMP ELM control. Topics of interest include collisionality variations, role of gyrokinetic modes in pedestal structure, effect of edge rotation and pedestal similarity experiments with other devices. Experiments are organized as a working group within Integrated Modeling. In 2011 we anticipate both a Joint Facilities Target and a DIII-D milestone on this subject.

- Thermal Transport in the Plasma Boundary. This topic replaces Hydrogenic Retention as a high-priority research topic in FY10 to support the FY10 OFES Joint Facilities Research Target. Divertor heat and particle flux have long been recognized as an important design driver for tokamak reactors, though the physics of 2D and 3D thermal transport in the scrape-off layer is not well established. The physics of energy transport in the plasma boundary is fundamental to the design of the divertor components for ITER. DIII-D has extensive edge/divertor diagnostic and control capabilities, which enables experiments to compare edge data with physics models and data from other tokamaks. DIII-D is uniquely positioned to provide data for validation of scrape-off layer (SOL) and divertor thermal transport models in a conventional aspect ratio device operating at sufficient powers to achieve H(98y2)>= 1, i.e. well above the L-H power threshold. Topics of interest include scaling of the midplane SOL width with operating parameters, validation of models for the scaling of the connections between upstream and divertor power widths and the effects of special conditions (e.g. RMP ELM control) on SOL power and particle widths. Activity for this topic directly supports the OFES FY10 Joint Facilities Research Target and DIII-D 2010 Milestone 172. This work is organized in a working group within the Plasma Boundary Interfaces group now formed within the Experimental Science Division.
- Energetic Particle Physics. This 2010 high priority research topic will build on results from FY08 experiments coupled with significant new diagnostic improvements implemented in FY09, including new views for fast-ion D_α (FIDA), a fast-ion loss detector (FILD), and continued improvements to the beam emission spectroscopy (BES) system for density fluctuation measurements. These efforts lay the preparatory groundwork for increased run time in FY10 dedicated to study of fast ion stability and transport with the aim of validating theoretical models such as the NOVA and NOVA-K codes. This effort is organized as a working group within Fusion Science. This work directly supports Milestone 173.

Below we convey the essential content of the various task force and physics groups and their goals and anticipated results. The research described is based on a 17-week experimental campaign, including 3 weeks supported by funds from the American Recovery and Reinvestment Act (ARRA) of 2009. To allow for contingency, experimental time has been allocated for 63 run days out of a possible 85 run days, with 17 days of contingency, 2 days of Torkil Jensen Award experiments and 3 days director's reserve. Additional detailed information can be found on the web, and related links: https://diii-d.gat.com/diii-d/Exp10.

The 2010 campaign follows a very successful 2009 campaign in which 16 weeks of operation were completed (2 weeks supported by the ARRA). Experiments in 2009

continued to exploit the new capabilities added during the 2005–2006 LTOA, including: 1) reorientation of the 210-degree neutral beam line to provide 5 MW of neutral beam power directed opposite from the remaining five sources, allowing balanced neutral beam injection up to 10 MW input power; 2) installation of an extended shelf in the lower divertor to allow pumping of high triangularity single-null and double-null plasmas; and 3) additional electron cyclotron heating (ECH) power and pulse length (~5 s, still in progress). In addition, for 2009 several significant diagnostic upgrades were implemented including: 1) two simultaneous high framing rate IRTVs in the lower divertor (from collaborations with TEXTOR and LLNL), 2) a new FILD for measuring the power lost in fast ions near the outer midplane, and 3) initial 2D SOL and divertor flow measurements through a collaboration between LLNL and Australia National University. During this campaign, many experiments were conducted in support of physics areas identified by the International Tokamak Physics Activity (ITPA) working groups (Table I). These experiments continued to support long-term physics needs of ITER. While the ITER Design Review has been formally completed, many issues remain open and studies continue under the guidance of the ITER Science and Technology Advisory Committee (STAC). These, as well as other high priority physics issues for ITER, are given the highest priority in the 2010 experimental campaign (Table II). In 2010, DIII-D will also continue to actively support the ITPA through taking part in joint experiments (Table III).

To enable the success of ITER by providing physics solutions to key physics issues is the highest priority of three overarching goals for DIII-D research. The 17-week program plan for 2010 provides adequate experimental time for DIII-D to continue its leading roles in development of a physics basis for steady-state operation in ITER and beyond, and to advance the fundamental understanding of fusion plasmas along a broad front.

Table I
DIII-D Conducted a Number of Experiments in 2009 in Support of the International Tokamak Physics Activity (ITPA)

ID No.	Title	DIII-D Experiment
TC-7	ITG/TEM transport dependence on T_i/T_e , q profile and rotation in L-mode	Correlation between core density and temperature fluctuations
TC-10	Experimental identification of ion temperature gradient (ITG), trapped electron mode (TEM) and electron temperature gradient (ETG) turbulence and comparison with codes	Multi-scale turbulence measurements in transport n model validation TF experiments
TC-11	He profiles and transport coefficients	He transport in advance regimes (piggyback experiment in 2009)
TC-13	ITG critical gradient and profile stiffness	Turbulence studies with ∇T_e modulation
TC-15	RF driven rotation	Generation mechanism and size scaling of intrinsic rotation
PEP-2	Pedestal gradients in dimensionally similar discharges and dimensionless scaling	DIII-D JET pedestal similarity experiments and dependence on ρ^{\ast}
PEP-17	Rotation effect on high β_p small ELM regimes	Dependence of pedestal structure and ELM size on collisionality and rotation
PEP-19	Basic mechanisms of edge transport with RMP in toroidal plasma confinement	Impact of RMP on core and edge transport during ELM suppression
PEP-20	Documentation of the edge pedestal in advanced scenarios	Optimization of the bootstrap current through variations in q_{\min} and q_{95}
DSOL-2	Injection to quantify chemical erosion	Argon detached divertor erosion studies, helium plasma chemical erosion comparisons
DSOL-14	Multi-code, multi-machine edge modeling and code benchmarking	Inboard/outboard ITER startup SOL widths
EP-2	Fast ion losses and redistribution from localized Alfvéé\n eigenmodes (AEs)	Energetic particle transport by plasma turbulence in L-mode
MDC-1	Disruption mitigation by massive gas injection	Optimize massive gas injection (MGI) pulse length and radiation asymmetry during MGI
MDC-2	Joint experiments on resistive wall mode physics	RMW feedback stabilization in Ohmic plasmas
MDC-4	Neoclassical tearing mode (NTM) physics – aspect ratio comparison	- DIII-D and NSTX aspect ratio comparison of NTM physics
MDC-8	Current drive prevention/stabilization of NTMs	m/n=2/1 NTM suppression in ITER baseline demonstration discharges
MHD-12	Non-resonant magnetic braking	Test link between toroidal torque and radial particle flux
MDC-14	Rotation effects on neoclassical tearing modes	DIII-D and NSTX aspect ratio comparison of NTM physics

Table I
DIII-D Conducted a Number of Experiments in 2009 in Support of the International Tokamak Physics Activity (ITPA) (Continued)

ID No.	Title	DIII-D Experiment
MDC-15	Disruption database development	Characterize vertical displacement events (VDEs) and disruptions with vertical instability
MDC-16	Runaway electron generation, confinement and loss	Characterize runaway generation, confinement and loss
MDC-17	Active disruption avoidance	Characterize VDEs and disruptions with vertical instability
IOS-2.2	Ramp-down from $q_{95}=3$	ITER ramp down studies
IOS-3.2	Define access conditions to get to steady- state (SS) scenario	Optimization of the bootstrap current through variations in q_{\min} and q_{95}
IOS-4.2	ρ^* dependence on transport and stability in hybrid scenarios	Scaling of transport with ρ^*
IOS-5.2	Ion cyclotron resonance heating (ICRH) local gas fueling requirements for coupling	Long distance fast wave antenna coupling

Table II
ITER Urgent Design Issues are a Major Focus for the DIII-D 2010 Campaign

STAC Topic	Topic Title	DIII-D experiment(s)
01.a	Vertical stability	ITER Startup and Ramp down high priority WG
01.b	Shape control/poloidal field coils	 Vertical stability during ramp down
		ECH startup assist
04	ELM control	ELM Control for ITER high priority WG
		• Scaling of divertor heat flux profiles during RMP
		ELM Suppression
		 Capability of pulsed non-axisymmetric fields for
		ELM pacing and ELM energy reduction
		 Impact of RMP on core and edge transport
	Additional topics	DIII-D effort
Disruptio	Additional topics on mitigation and avoidance	DIII-D effort Rapid shutdown TF and disruption characterization and
Disruptio		
		Rapid shutdown TF and disruption characterization and
Thermal	on mitigation and avoidance	Rapid shutdown TF and disruption characterization and avoidance WG
Thermal Developi	on mitigation and avoidance transport in the plasma boundary	Rapid shutdown TF and disruption characterization and avoidance WG SOL thermal transport high priority WG and milestone
Thermal Developi	on mitigation and avoidance transport in the plasma boundary ng ITER reference discharges in each	Rapid shutdown TF and disruption characterization and avoidance WG SOL thermal transport high priority WG and milestone ITER demonstration discharges WG
Thermal Developi ITER ope	on mitigation and avoidance transport in the plasma boundary ng ITER reference discharges in each	Rapid shutdown TF and disruption characterization and avoidance WG SOL thermal transport high priority WG and milestone ITER demonstration discharges WG Baseline demonstration discharges at low

Table III
Many Experiments Planned During 2010 will Support the International Tokamak Physics Activity (ITPA)

ID No.	Title	DIII-D Experiment
TC-4	H-mode transition and confinement dependence on ionic species	P_L -H vs helium purity from 40%> 5%, H-mode performance, pedestal and ELM characteristics in He vs D_2 plasma
TC-7	ITG/TEM transport dependence on T_i/T_e , q profile and rotation in L-mode plasmas	Dependence of multi-field turbulence properties and transport on $T_{\rm e}/T_{\rm i}$
TC-10	Experimental identification of ITG, TEM and electron temperature gradient (ETG) turbulence and comparison with codes (change of title)	Test of simulations in high confinement, quiescent regime, QH-mode
PEP-18	Comparison of rotation effects on Type I ELMing H-mode in JT-60U and DIII-D	Effect of edge rotation on pedestal height, ELM size and turbulence
PEP-19	Basic mechanisms of edge transport with resonant magnetic perturbations in toroidal plasma confinement devices	3D heat flux during RMP ELM control
PEP-23	Quantification of the requirements for ELM suppression by magnetic perturbations from internal off mid-plane coils	RMP ELM suppression with no/low counter rotation
PEP-24	Minimum pellet size for ELM pacing	Pellet triggering physics
PEP-26	Critical edge parameters for achieving L-H transition	H-mode threshold power and performance, pedestal and ELM characteristics in D_2 plasma
PEP-27	Pedestal profile evolution following L-H transition	H-mode threshold power and performance, pedestal and ELM characteristics in D_2 plasma
PEP-28	Physics of H-mode access with different X-point height	H-mode threshold power and performance, pedestal and ELM characteristics in D_2 plasma
DSOL-9	¹³ C injection experiments to understand C migration	¹³ C injection preparation for oxygen bake
DSOL-12	Reactive wall cleaning	¹³ C injection preparation for oxygen bake
MDC-1	Disruption mitigation by massive gas jets See DSOL-11	Impurity injection into runaway electron beam
MDC-2	Joint experiments on resistive wall mode physics	Current driven resistive wall mode (RWM) feedback development, fishbone driven energetic particle interaction with RWMs
MDC-8	Current drive prevention/stabilization of NTMs	Tearing mode structure of 2/1 island in hybrid plasma
MDC-12	Non-resonant magnetic braking	Test NTV theory of non-resonant magnetic fields
MDC-14	Rotation effects on neoclassical tearing modes	Tearing mode structure of 2/1 island in hybrid plasma
MDC-15	Disruption database development	Impurity injection into runaway electron beam
MDC-16	Runaway electron generation, confinement, and loss	Runaway electron generation, confinement, and loss (Day 1 of 2)
EP-2	Fast ion losses and redistribution from localized Aes	Fast-ion transport by many RSAEs and TAEs

IOS-2.2	Ramp-down from q_{95} =3	ITER rampdown scenarios beyond the baseline		
IOS-3.1	Beta limit for SS with ITER	Stationary fully non-inductive operation		
100 3.1	recommended q-profile.	Stationary runy non-medicare operation		
IOS-3.2	Define access conditions to get to SS scenario	Fully noninductive development		
IOS-4.1	Access conditions for hybrid with ITER- relevant restrictions	EC+FW advanced inductive development, Day 1		
IOS-5.2	Maintaining ICRH coupling in expected ITER regime	FW coupling development		
IOS-6.1	Modulation of actuators to qualify real- time profile control methods for hybrid and steady state scenarios	Model based current profile control Day 1		
DIAG-3	Resolving the discrepancy between ECE and TS at high $T_{\rm e}$	Investigate disagreements between Thomson scattering and ECE measurements in high T _e discharges		
TC-2	Power ratio – hysteresis and access to H-mode with H~1	H-mode threshold power and performance, pedestal and ELM characteristics in D ₂ plasma		
TC-3	Scaling of the low-density limit of the H-mode threshold	H-mode threshold power and performance, pedestal and ELM characteristics in D ₂ plasma		
PEP-22	Controllability of pedestal and ELM characteristics by edge ECH/ECCD/LHCD	Effect of collisionality and rotation on pedestal height, ELM size and turbulence		
PEP-25	Inter-machine comparison of ELM control by magnetic field perturbations from midplane RMP coils	Effect of collisionality on pedestal height, ELM size and turbulence		
DSOL-2	Injection to quantify chemical erosion	DiMES exposures with porous plug injector		
DSOL-20	Transient divertor reattachment	Heat flux measurements of the divertor and SOL		
DSOL-21	Introduction of pre-characterized dust for dust transport studies in divertor and SOL	DiMES exposures		
MDC-17	Active disruption avoidance	Active control of locked modes		
EP-3	Fast ion transport by small scale turbulence	Fast-ion transport by NTMs and at sawtooth crashes		
EP-4	Effect of dynamical friction (drag) at resonance on nonlinear AE evolution	Fast-ion transport by many RSAEs and TAEs		
IOS-1.2	Study seeding effects on ITER baseline discharges	Radiative divertor + RMP ELM suppression, reversed \boldsymbol{B}_{T}		
IOS-6.2	$\ell_{\rm i}$ controller ($I_{\rm p}$ ramp) with primary voltage/additional heating	Improved startup scenarios for ITER		
TC-10	Experimental identification of ITG, TEM and ETB turbulence and comparison with codes (change of title)	Test of simulations in high confinement, quiescent regime, QH-mode		
DSOL-22	Multi-code validation against experiment for improved detachment modeling	C-Mode heat flux comparison, divertor heat flux scaling		

The experimental 2010 plan was compiled based on input and prioritization provided by the 2010 DIII-D Research Council. The Research Council develops a research plan on an annual basis based on the "DIII-D Five-Year Program Plan 2009-2013," January 2009, GA-A25889, with adjustments made for scientific and programmatic issues identified since that plan was written. As already stated, these deliberations consider the needs of ITER and ITPA, as well as input from the US Burning Plasma Organization.

The experimental plan supports five DOE Milestones: 171–175. One of these milestones (172) is in support of the FES Joint Research Target, and a second milestone (175) reports the work scheduled for the ARRA funded additional experimental time.

Milestone 171: L-H mode transition dependence on Ionic Species (February, 2010).

Milestone 172: SOL thermal transport physics: includes consistency between divertor heat flux and upstream parameters in support of FES Joint Research Target (September, 2010).

Milestone 173: Compare measured fast ion transport by Alfvén eigenmodes to theoretical models (September 2010).

Milestone 174: Assess fast wave coupling and heating efficiency in H-mode plasma including impact on plasma performance (August 2010).

Milestone 175: Evaluate ITER TBM Magnetic Field Perturbations on plasma performance (July 2010).

Joint facility research target (GG 3.1/2.49.1): Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak SOL plasma, strengthening the basis for projecting divertor conditions in ITER. In FY10, FES will measure the divertor heat flux profiles and plasma characteristics in the tokamak scrape-off layer in multiple devices to investigate the underlying thermal transport processes. The unique characteristics of C-Mod, DIII-D, and NSTX will enable collection of data over a broad range of SOL and divertor parameters (e.g., collisionality, beta, parallel heat flux, and divertor geometry). Regimes similar to the ITER operating scenarios will be among those studied and characterized. Coordinated experiments using common analysis methods will generate a data set that will be compared with theory and simulation. (September 2010).

In November 2008, a call for experimental research proposals towards the DIII-D objectives was issued and 553 proposals (Table IV and Appendix A) were received and community-wide Opportunities Research http://fusion.gat.com/global/Rof2009) on December 16-18, 2008. The overall interest of the general fusion community in research on DIII-D is exemplified by the large number of proposal submissions that were received from universities (165) and foreign labs (136), including 18 proposals received directly from the ITER International Organization (IO) in Cadarache, France. Remote participation, using H.323 video, was used in the plenary and most of the breakout sessions to allow participation by scientists at many remote locations in the US, including Princeton Plasma Physics Laboratory, Massachusetts Institute of Technology, and Oak Ridge National Laboratory, and internationally, including JET, ASDEX-Upgrade, JAEA, MAST, TEXTOR and the ITER IO. The interest shown in the DIII-D program is partly a result of DIII-D's commitment to domestic and international collaborations as well as its participation in the ITPA process and ITER Design Review. A listing of the proposals received at the ROF is included **Appendix** Α of this report and can viewed as be http://fusion.gat.com/global/Rof2009.

For the 2010 experimental campaign, DIII-D constructed a Test Blanket Module (TBM) mockup device, with both toroidal field and poloidal field coils, that could be inserted into a DIII-D midplane port to simulate the magnetic perturbation that is predicted to result from the ferromagnetic components of the six test blanket modules in ITER. The construction of the TBM mockup was supported to a large extent by funds from the American Recovery and Reinvestment Act (ARRA) of 2009. And the implementation of the experiment is planned under the additional experimental time funded by the ARRA. In preparation for the addition of the TBM mockup task force in 2010, an electronic proposal submission process was established using the same format as in the 2009 ROF. Twenty-six new proposals were received for experiments examining the effect of the TBM magnetic perturbation field on various aspects of tokamak physics. Of these four were from universities and seven from international institutions including three from the ITER IO, with the remainder from GA and the US national laboratories. These proposals are listed in Section 1.3 of this report and can be viewed at https://diiid.gat.com/diii-d/TBM2010 submission.

Table IV Proposal Statistics for the 2009-2010 Campaign

Area	Proposals Received	Unique Proposals	Proposals in 15 + 17-week Plans for 2009-2010	Backlog of Proposals Post 2010			
Task Forces and Torkil Jensen Award (reporting to Director of Experimental Science Division)							
Rapid shutdown schemes for ITER	15	14	14	2			
Physics of non-axisymmetric fields in support of ITER	53	48	19	29			
Transport model validation	25	14	8	8			
Test blanket module (TBM) mockup	26	16	10	10			
Torkil Jensen award	22	20	4	16			
Physics Groups (reporting to Physics Group Leaders)							
Steady-state integration	65	55	18	25			
Integrated modeling	21	17	9	8			
ITER physics	159	118	20	98			
Plasma control and operations	28	24	7	17			
Fusion science	122	106	42	64			
Plasma boundary interfaces	49	32	17	15			
Totals	585	464	168 (128 days)	292			

For 2010 the working groups reviewed these proposals and gathered additional ideas in response to results from the 2009 experimental campaign. Reprioritization of the new set of remaining proposals was done within the working groups and an overall prioritized run plan proposal was prepared in each physics area and task force. These plans were then presented to the Research Council. Subsequently, the Research Council provided advice to the Director on the relative allocation of experimental time amongst the various areas. Based on this input, the Director established the experimental allocation for each program area.

The final run plan (Table V and Fig. 2) reflects the DIII-D Team's commitment to support ITER Urgent Design Issues, as identified by the ITPA, US BPO, the ITER Design Review Working Groups, and the ITER STAC. The plan is highlighted by experiments in support of urgent physics issues, where our research results may have an immediate impact on the ITER design itself. Experiments where DIII-D has unique capabilities to address these issues have been given highest priority.

Table V
Run Time Allocations for the 2010 Experiment Campaign

Area	Description	Plan (Days)	ITPA/IEA Experiments	Area Leaders					
Task Forces (reporting to Director of Experimental Science Division)									
Rapid shutdown for ITER	Develop a recommendation for ITER on the best rapid shutdown scheme	4	2	E. Hollmann T. Jernigan					
Physics of non- axisymmetric fields in support of ITER	Investigate the common physical basis of the effects on global stability, ELMs, plasma rotation and confinement due to non-axisymmetric fields	5	1	H. Reimerdes O. Schmitz					
Transport model validation	Validate computational tools to predict core plasma transport in future devices	4	2, 6	T. Rhodes C. Holland					
Test Blanket Module	Assess the effect of the perturbation fields from the Test Blanket Modules in ITER	(ARR A)	4	M. Schaffer, J. Snipes (ITER), C. Greenfield					
Torkil Jensen Award	Support experiments investigating potentially transformational physics using innovative techniques	2	0	M. Wade					
Physics Groups	Physics Groups (reporting to Physics Group Leaders)								
Steady-state integration	Develop the physics basis for steady-state operation in ITER and future devices	13 (2 ARRA	6	T. Luce					
Integrated modeling	Experimental validation of complex theoretical models	4	2	R. Prater					
ITER physics	Provide physics solutions to key design and operational issues for ITER	10 (2 ARRA	11	E. Strait					
Plasma control and operations	Develop and deploy state-of-the-art plasma control systems for DIII-D	3.5	3	D. Humphreys					
Fusion science	Advance basic fusion plasma science on DIII-D through test of basic theories, development of new measurement capabilities, and novel ideas	10	7	C. Petty					
Plasma boundary interfaces	Develop an improved understanding of energy and particle transport in the plasma boundary through tests with applicable theories/models, characterization of the interaction of the plasma with material surfaces, the migration and retention of eroded materials and fuel in those surfaces, and the development of new measurement capabilities	6.5	7	T. Leonard					
Total allocated days			47						
	Director's reserve	3							
	Contingency	17							
	Available days	85							

Area/Task Force	Days in 17 weeks	ITER	AT	Fusion Science
Torkil Jensen Award	2			
Rapid Shutdown	4	4		
Non-Axisymmetric Fields	5	2	2	1
Transport Model Validation	3	1	1	1
Test Blanket Module	4	4		
ITER Physics	10	10		
Steady State Integration	13		13	
Fusion Science	10			10
Integrated Modeling	4			4
Plasma Control	3.5	2	2	
Plasma Boundary Interfaces	6.5	3		4
Director's Reserve	3			
Totals	63 (+5)	26	18	20

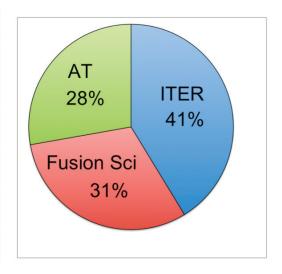


Fig. 2. The fractional allocation of 2010 Experimental Campaign run time into the three primary areas of the DIII-D program shows continuation of DIII-D's strong commitment to ITER related physics research.

DIII-D continues to have a large research backlog as is shown in Table IV. A measure of this backlog is obtained from comparing the number of proposals that the area leaders expect can be reasonably completed in a 15-week campaign during 2009 (77) plus a 17-week campaign during 2010 (91) compared to the total number of unique proposals (470). This leaves a proposal backlog of 296 proposals. The 2009–2010 campaigns, therefore, will only allow 36% of the research proposed in the most recent (December 2008) Research Opportunities Forum (ROF) to be conducted.

The 17 run week experimental plan for 2010, summarized in Tables V and VI, consists of efforts in four task forces and six physics groups. The physics groups themselves are in turn made up of a total of 27 working groups (Fig. 1).

Torkil Jensen Award

Torkil was an extremely productive physicist whose long career was marked by innovative work on a wide variety of fusion-related subjects brought forward with a strong sense of optimism and enthusiasm. The Torkil Jensen Award was created to inspire proposals from the broader fusion community for experiments with potential for transformational new results with high visibility or scientific impact. This year, six proposals were submitted and two were selected based on the recommendation of the award committee consisting of David Hill of LLNL, Keith Burrell of General Atomics, and Prof. Mike Mauel of Columbia U. One of the winners has been announced so far:

TBM Field for QH-mode Access with Small Co-Ip NBI Torque by Andrea Garofalo, General Atomics. (1 day)

Task Forces

Task Force on Rapid Shutdown for ITER (4 days). Four days are allocated for this task force for FY2010 operation, in addition to the time provided for experiments organized within the ITER Physics Topical Area. Experiments this year should focus on understanding and minimizing the total particle input required to provide mitigation of runaway electrons by exploring alternative suppression methods, while seeking to understand the physics of runaway generation and subsequent mitigation. This task force should work in close coordination with the disruption characterization working group that is part of the ITER Physics Group.

Task Force on the Physics of 3D Fields for ITER (5 days). Five days are allocated for experiments related to non-asymmetric field perturbations. The task force should maintain its efforts to understand the response of the plasma to external 3D fields (e.g, understanding the field penetration and resulting magnetic topology). In addition experiments examining the impact of both resonant and non-resonant 3D fields on H-mode performance and transport should be pursued. This task force and the RMP ELM Control Working Group should work together closely to address these related research topics. Members of this task force should participate in planning the ITER TBM experiments, since they may also provide useful data related to the work here.

Task Force on Transport Model Validation (3 days). A total of three days is allocated to this task force for experiments in FY2010. The excellent results obtained during 2009 produced new data that challenged transport simulations. Experiments this year should continue the focus on plasma turbulence relevant to electron thermal transport, including as it relates to plasmas with varying T_e/T_i . The task force should maintain its close coordination with theorists to provide the requisite supporting simulations.

Task Force on TBM Tokamak Physics This newly created task force will develop and coordinate experiments using an insertable module designed to explore how the field perturbation from the ITER TBMs might impact the tokamak plasma. A total of four days is allocated for initial experiments, with additional time provided from the Director's Reserve as necessary, depending on results of planned experiments. Highest priority should be given to determining if the TBM simulation module significantly affects H-mode performance in DIII-D. Potential effects should be examined over a range of collisionalities. Potential areas of impact of particular interest to ITER include H-mode confinement and transport, ELM suppression by RMP, and L-H transition threshold power; detailed scans of many parameters should be deferred until the main effects of the TBM field perturbations have been identified. The work of this task force is in direct support of DIII-D Milestone 175. These

experiments were supported by funds from the American Recovery and Reinvestments Act (ARRA) of 2009.

Physics Groups

ITER Physics Group (10 days). The DIII-D ITER Physics Group has identified a number of important research needs to support ITER. A total of 10 days is allocated in this area. ELM control remains an important topic for ITER, and work in this area should address compatibility with required operating conditions including the L-H power threshold. Evaluation of AC ELM pacing utilizing the RMP coils should also have priority. In the area of disruption, experiments should seek to understand runaway electron generation and mitigation; experiments should be coordinated with the DIII-D Rapid Shutdown Task Force. DIII-D experiments with hydrogen in FY08 and with helium in FY09 made significant progress on documenting the L-H threshold power, sufficient to complete Milestone 171 in 2010. Priority should be given to developing and understanding non-nuclear helium ITER scenarios, including characterization of confinement, pedestal, and L to H power threshold. The DIII-D ITER Physics Group should prioritize their efforts to address these high impact topics. Two days of these experiments were supported by funds from the American Recovery and Reinvestments Act (ARRA) of 2009.

Steady State Integration Group (includes support for Milestone 174) (13 days). A total of 13 days is allocated for research in support of Advanced Tokamak development. Work should emphasize developing scenarios with dominant electron heating including coupling significant power from the fast wave system in high performance plasmas to the extent possible. The potential for obtaining significant fast wave electron heating in advanced scenarios has significant long-term implications for the DIII-D program that should be discovered prior to the LTO II. Related preparatory experiments should be included with this activity. This research fulfills the primary requirements for DIII-D Milestone 174. Two days of these experiments were supported by funds from the American Recovery and Reinvestments Act (ARRA) of 2009.

Fusion Science (10 days including support of Milestone 174 and responsibility for Milestone 173). Research within the Fusion Science area of the Experimental Science Division spans a very wide range of topics; virtually all research on DIII-D contains a strong fusion science component. This year, 10 days are allocated to fusion science. Energetic particle (fast ions) research should have the highest priority, addressing topics relevant to successful completion of DIII-D Milestone 173. The remaining time allocated to fusion science should address rotation physics, transport, and stability. Work on fast wave coupling is to be incorporated into steady-state integration research in support of Milestone 174.

Integrated Modeling (including pedestal structure) (4 days including initial work toward a proposed OFES Joint Research Target in 2011). Work on integrated modeling complements the activities of the fusion science area by seeking to validate specific theory, codes, and models against experiment. An OFES Joint Research Target which includes the US Theory program is planned for FY2011. Four days in FY10 are allocated for experiments to study the pedestal. The focus of the experiments should be to collect sufficiently detailed measurements where possible to test key hypotheses regarding the physical mechanisms responsible for the pedestal structure (width and height). It is important that the pedestal be carefully evaluated in helium plasmas. The group is encouraged to engage related to the Joint Research Target in planning and executing its work.

Plasma Control (3.5 days plus unspecified number of 2-hour shifts). Three and one-half days are allocated to plasma control experiments in 2010. Priority should be given to continuing research on ITER ramp down scenarios as part of the (ITER Scenario Access and Rampdown (ISAR) work, which remains of key interest to the ITER Organization's physics team. Sustaining discharges initiated by solenoid-free start-up should be completed in this area, with a clear focus on understanding the requirements to transition to a sustained noninductive plasma. Experiments required for graduate student research should be supported as possible. Plasma control development will have priority for 2-hour extensions to run days subject to the Director's approval.

Plasma Boundary Interfaces (6.5 days). The OFES FY10 Joint Research Target on heat transport in the tokamak scrape-off layer addresses a topic of high interest to ITER and the US fusion program, and which is important to Advanced Tokamak development. The major portion of the 6.5 days allocated to this area should be directed to research in support of Milestone 172 and the Joint Research Target. Work should focus on simultaneously obtaining sufficient relevant H-mode divertor heat flux and upstream plasma profile data to identify how these profiles depend on key parameters (e.g., power), which can then be used inform and test models of the SOL. The remaining run time should seek to complete experiments on hydrogenic retention, including the oxygen bake experiment at the end of the run period, subject to successful completion of a readiness review and approval from DOE. Some time should be given to high priority DiMES experiments.

The plans and goals for the various science areas are detailed below.

1.1. TASK FORCES FOR 2010

1.1.1. TASK FORCE ON RAPID SHUTDOWN SCHEMES FOR ITER (Leader: E.M. Hollmann Deputy: T.C. Jernigan)

- **1.1.1.1. Mission.** Make recommendations to ITER on best rapid shutdown scheme or combination of schemes.
- **1.1.1.2. Importance and Urgency.** Unmitigated disruptions are a significant concern for ITER because of possible wall damage due to localized heat loads, vessel forces and runaway electron beams. Solutions to these issues will impact hardware decisions for ITER.
- **1.1.1.3. Research Areas for 2010.** This Task Force will focus on the following areas:
 - Exploration of the use of shell pellets for triggering controlled rapid shutdown though ablation and dispersal studies.
 - Exploration of the use of large shattered cryogenic deuterium and neon pellets for rapid shutdown without runaway electrons.
 - Techniques for deconfining runaway electrons to prevent localized heat loads.

1.1.1.4. New and/or Unique Tools.

- New, unique large shattered cryogenic deuterium pellet injector.
- Fabrication and injection of customized shell pellets for rapid shutdown.
- New runaway electron diagnostics.

1.1.2. TASK FORCE ON PHYSICS OF NON-AXISYMMETRIC FIELD EFFECTS FOR ITER (Leader: H. Reimerdes Deputy: O. Schmitz)

- **1.1.2.1. Mission.** Improve our physics understanding of the plasma response to non-axisymmetric magnetic field perturbations.
- **1.1.2.2.** Importance and Urgency. Non-axisymmetric magnetic field perturbations can have both positive effects (e.g. ELM suppression, RMW feedback control) and negative effects (e.g. rotation braking and locked mode triggering, confinement degradation, enhanced fast particle loss) on the plasma performance. Many of these effects will affect the performance (transport and stability) of the ITER plasma and physics understanding of these responses by the plasma will impact ITER design decisions.

1.1.2.3. Research Areas for 2010. This Task Force will focus on the following areas:

- Determine the magnetic topology in the plasma in the presence of non-axisymmetric fields.
- Investigate how external and internal non-axisymmetric fields change plasma transport (particle, energy and momentum).
- Explore how non-axisymmetric fields modify plasma stability.
- Develop techniques to optimize correction of error fields.

1.1.2.4. New and/or Unique Tools.

- Combination of upper and lower internal perturbation coils (I-coils) capable of high frequency or high current operation with external error field correction coils (C-coils).
- Unique diagnostics to measure plasma response including resonant field amplification methods.

1.1.3. TASK FORCE ON TRANSPORT MODEL VALIDATION (Leader: T.L. Rhodes Deputy: C. Holland)

- **1.1.3.1. Mission.** Validation of both theory-based transport models and turbulence models including but not limited to GYRO, TGLF, XPTOR/TGYRO etc.
- **1.1.3.2. Importance and Urgency of Research**. The ITER IO needs plasma performance predictions based on validated core plasma transport codes to evaluate the effect of design choices on fusion power and neutron fluence.

1.1.3.3. Research Areas for 2010.

- Parametric variations including dependence of transport on elongations, T_e/T_i, ion mass, safety factor, Mach number, collisionality, and beta.
- Basic turbulence mode properties including phase between density and temperature fluctuations and studies of high confinement ELM free regimes like QH-mode.

1.1.3.4. New and/or Unique Tools.

 Flexible shape control, heating-rotation control (co- and counter-NBI), localized heating (ECH), multiple confinement regimes (QH-mode, core barriers, hybrid etc.).

- Unique diagnostics including fluctuation measurements at the ITG, TEM and ETG scales, \tilde{n} , \tilde{T}_e , turbulence flows, radial and poloidal correlations lengths, density-temperature phase angle, and zonal flows.
- Close coordination with theoreticians at GA and in the broader international community.

1.1.4. TASK FORCE ON ITER TEST BLANKET MODULE MOCKUP (Leaders: M.J. Schaffer and J. Snipe (ITER IO) Deputy: C.M. Greenfield)

- **1.1.4.1. Mission.** Test the effect of localized edge magnetic perturbation fields, that are a scaled version of the perturbation fields expected from the ferromagnetic test blanket modules in ITER, on multiple aspects of tokamak plasma performance. The highest priority of this task force is to fulfill the ITER requested objectives of Milestone 175.
- **1.1.4.2. Importance and Urgency of Research.** The ITER IO needs quantitative evaluation of the possible effects of the TBMs on plasma performance to determine if the TBMs will prevent achievement of the baseline mission requirements.

1.1.4.3. Research Areas for 2010.

- General survey of TBM effects on a broad range of plasma performance
- Detailed effects of TBM fields on:
 - L-H power thresholds
 - Core plasma confinement and transport
 - ELM Suppression by resonant magnetic perturbations
 - Fast ion confinement and loss
 - Error field penetration and locked mode thresholds.
- **1.1.4.4. New and/or Unique Tools.** Recently constructed TBM mockup device that fits in the 270 midplane port of DIII-D. The TBM mockup utilizes two racetrack coils to produce a perturbation field similar to a scaled version of the toroidal field component of the ITER TBM perturbation, and a single solenoid coil to produce a perturbation similar to a scaled version of the ITER TBM poloidal field perturbation. The TBM mockup can also be positioned in various radial locations within the 270 R-0 port to simulate various design locations for the TBM units in the ITER ports.

1.2. PHYSICS GROUPS

Consistent with 2009, these groups parallel the organization of the DIII-D Experimental Science Division. Each consists of one or more working groups, reporting to the physics group leader.

1.2.1. ITER PHYSICS (Leader: E.J. Strait)

The ITER Physics group provides a home for several issues of importance to ITER, as well as a point of contact for future ITER physics needs. ELM Control for ITER is the high priority physics topic in this area.

1.2.1.1. Mission. Provide physics solutions to key design and operational issues for ITER.

1.2.1.2. Importance and Urgency.

- Short-term research is needed to address short-deadline urgent issues, identified during the ITER design review.
- Several other issues have been identified that can be addressed in the mediumterm and still have impact on the ITER design.
- **1.2.1.3. Research Areas for 2010.** This physics group is organized into the following working groups:
 - **ELM Control for ITER** (**high priority research topic**). Develop the physics basis for ELM control techniques in particular for ELM Suppression by resonant magnetic perturbations (RMPs). Explore alternate means of ELM control such as pellet ELM pacing, RMP ELM pacing and QH-mode operation.
 - **Disruption Characterization and Avoidance**. Develop a physics understanding of causes and consequences of disruptions, strategies toward disruption-free operation. Characterize vertical displacement events (VDEs), vertically unstabile disruptions (VUDs) and runaway electron generation, confinement and loss.
 - **NTM Stabilization**. Establish a physics basis for NTM stabilization in ITER. Validate model predictions for NTM stabilization by modulated and continuous ECCD. Develop methods for control of locked tearing modes.
 - ITER Demonstration Discharges. Develop improved basis for projections to ITER through direct comparison of the four primary ITER scenarios on a single present device. Explore performance optimization methods for ITER scenarios.
 - **Hydrogen and Helium Discharges**. Work toward a physics basis to predict ITER performance during the initial non-deuterium operation phase. Revisit, and in

many cases study for the first time, isotope scaling of L-H transition, energy confinement, pedestal width, ELM characteristics, ELM avoidance, and ELM suppression. This working group is responsible fore Milestone 171.

1.2.2. STEADY-STATE INTEGRATION (Leader: T.C. Luce)

Assessment of steady-state current profiles for optimum performance is the high priority research topic in this physics area.

1.2.2.1. Mission. Develop the physics basis for steady-state operation in ITER and future devices.

Demonstrate stationary high-performance inductive and non-inductive solutions that would satisfy the objectives of future fusion devices. Develop sufficient physics understanding for projection and optimization of similar scenarios for existing and future tokamaks.

- **1.2.2.2. Importance and Urgency.** Steady-state scenarios will likely be required in a future fusion-based power plant. In a shorter term, this effort should build a basis for steady-state scenarios in ITER, FDF, and DEMO. The urgency comes from a need to specify appropriate actuators to achieve steady-state ITER operation.
- **1.2.2.3. Research Areas for 2010.** This physics group is organized into the following working groups:
 - Fully Noninductive High Beta Operation (high priority). Optimization of existing steady state scenario with the goal of fully noninductive operation for τ_R. Exploration of higher β scenarios, with a target β_N=5. Explore new approaches to steady state. This work is complementary with experiments studying the ITER SS scenario in the ITER Physics Research Area.
 - Core Integration (Advanced Inductive). Clarify the role of the m=3/n=2 tearing mode in hybrid scenario performance. Establish a physics basis for extrapolation. Explore scaling of transport with ρ* and understand access conditions for hybrid scenarios. This working group, in combination with the Heating and Current Drive Working Group in the Fusion Science Physics Area, is responsible for Milestone 174
 - Core-Edge Integration. Optimize particle inventory control for steady-state scenarios. Explore combination of ELM Suppression by RMPs from the I-coil and radiative divertor operation in standard H-mode.

• **RWM Physics**. Assess RWM feedback stabilization methods at low rotation using current driven RWM in collaboration with the RFX group (Padua, Italy). Establish a physics basis for rotational stabilization.

1.2.2.4. Unique Tools.

- High power ECH/ECCD (six gyrotrons at start of campaign) for off-axis current drive.
- Lower pumped divertor facilitates particle control in plasma shapes optimized for high β.
- The internal I-coil and external C-coil for simultaneous error field and RWM control.
- Counter-NBI, provided by the rotated 210° beamline, allows control of applied torque decoupled from heating power, facilitating low-rotation studies.

1.2.3. FUSION SCIENCE (Leader: C.C. Petty)

- **1.2.3.1. Mission.** Advance the fundamental science understanding of fusion plasmas, Especially in areas where DIII-D has unique capabilities or high leverage.
- **1.2.3.2. Importance and Urgency.** Understanding of the physics underlying the behavior of fusion plasmas is critical in building a predictive capability for the design and operation of future devices.
- **1.2.3.3. Research Areas for 2010.** This physics group is organized into the following working groups. Although the topical science areas of previous years are each represented by a working group within Fusion Science, much of the work that would have previously been in these areas is now done elsewhere in the program. The overall emphasis on science in the DIII-D program is not diminished, rather it permeates the entire DIII-D research program.
 - **Rotation Physics**. Develop a predictive understanding of rotation by conducting experiments aimed at improving our knowledge of intrinsic rotation, momentum transport, and rotation damping.
 - Energetic Particles (high priority for 2010). Study fast ion stability and transport with the goal of validating theoretical models such as the NOVA and NOVA-K codes. Utilize improved diagnostic capabilities implemented in 2009 including: new views for FIDA and FIDA-I, fast FIDA, and FILD. This working group is responsible for Milestone 173.
 - **Transport**. The goal of the DIII-D Transport Topical Area is to develop a fundamental and comprehensive understanding of turbulence and transport

behavior in magnetically confined plasmas, with a long-term goal of developing a predictive capability for turbulent transport. Progress in this area is closely coupled with development of theory-based turbulent transport models in the Integrated Modeling Physics Research Area and in the Transport Model Validation Task Force.

- **Stability**. The goal of the DIII-D Stability Topical Area is to establish the scientific basis to predict and control macroscopic instabilities.
- **Heating and Current Drive**. The goal of the DIII-D Heating and Current Drive Topical Area is to develop comprehensive, predictive models for NBCD, ECCD, and FWCD. In addition, research on the self-generated bootstrap current is in this topical area. This working group, in combination with the Core Integration Advance Inductive working group under Steady State Integration Physics Area, is responsible for Milestone 174

1.2.3.4. New and/or Unique Tools.

- DIII-D's uniquely comprehensive diagnostic set facilitates detailed fusion science studies.
- Unique capabilities to vary shape, heating location and mix, and density.

1.2.4. INTEGRATED MODELING (Leader: R. Prater)

- **1.2.4.1. Mission.** The experimental validation of complex theoretical models.
- **1.2.4.2. Importance and Urgency.** Understanding of the physics underlying the behavior of fusion plasmas is critical in building a predictive capability for the design and operation of future devices. This understanding will be embodied in codes representing complex physical models. Experimental validation is a critical step in preparing these codes for use as predictive tools.
- **1.2.4.3. Research Areas for 2010.** This physics group for 2010 has two working groups because the work on pedestal structure physics previously done in a task force is now handled by this physics area:
 - **Pedestal Structure Physics**. Develop validated model of pedestal height including tests of EPED1 predictive model. Explore techniques to optimize pedestal for ITER and beyond.
 - **Integrated Modeling**. Integrated modeling of simulated alpha heating in an ITER demonstration discharge.

1.2.4.4. Unique Tools.

- All of the tools listed for Fusion Science are applicable.
- In addition, close collaboration with the GA Theory Group and other modelers is important for this effort.

1.2.5. PLASMA CONTROL AND OPERATIONS (Leader: D. Humphreys)

- **1.2.5.1. Mission.** Develop and deploy state-of-the-art plasma control systems for DIII-D. Study control issues for ITER.
- **1.2.5.2. Importance and Urgency.** Studies of the ITER startup and shutdown, as well as vertical stability, are of critical short-term importance to ITER and may have impact on the design of that device. The work in model-based control should have impact on the DIII-D program within the next year, and should improve our ability to develop and control new sets of plasma conditions.
- **1.2.5.3. Research Areas for 2010.** This physics group is organized into the following working groups:
 - ITER Startup, Shutdown, and Vertical Stability (high priority research topic). Develop and demonstrate ITER startup/ramp down scenarios and study access to flattop operating scenarios including also vertical stability assessment and control, L-H access for ITER and real-time locked mode control.
 - **Model-based Control**. Develop MIMO based plasma control for routine operation in DIII-D. Develop model-based profile control.

1.2.5.4. New and/or Unique Tools.

Unique DIII-D Plasma Control System

1.2.6. PLASMA BOUNDARY INTERFACES (Leader: T. Leonard)

- **1.2.6.1. Mission.** Provide physics understanding of SOL plasma, divertor plasma and plasma materials interaction toward solutions of steady state and transient heat and particle flux issues for ITER and future high power tokamaks.
- **1.2.6.3. Research Areas for 2010.** This physics group is organized into the following working groups:
 - Hydrogen Retention. Improve extrapolation of tritium control for ITER operation by understanding physics mechanisms of tritium (hydrogenic species) retention in material surfaces. Work will include measurement and modeling of

the edge plasma and transport, particle balance measurements and evaluation of the changing properties of the material walls.

- Thermal Transport in the Plasma Boundary (2010 high priority research topic in support of the Joint Facilities Research Target). Develop understanding of the heat transport in the plasma SOL and divertor toward predictive capability for ITER including fluctuation driven transport in the SOL, PFC energy characteristics during rampup and ramp down, and power widths in rf-heated discharges. This working group is responsible for Milestone 172 and the DIII-D contributions to the 2010 Joint Facilities Research Target.
- **SOL Main Ion and Impurity Flows**. Establish physics mechanisms leading to measured strong plasma flows in the SOL toward the inner divertor target.
- Physics of Volume Recombination and Divertor Detachment. Explore detachment and radiative divertor models, characteristics of the secondary X-point and novel divertor configurations with potential for enhanced divertor detachment and heat flux spreading control.

1.3. RESEARCH PROPOSALS RECEIVED

A detailed list of research proposals received during the 2009–2010 ROF is given in Appendix A. These proposals formed the basis for both the 2009 and 2010 campaigns. In addition the table below shows the 2010 TBM ROF proposals received in support of the TBM Task Force for 2010.

TEST BLANKET MODULE MOCK-UP RESEARCH PROPOSALS RECEIVED for 2010

ID	Title	Research Area	Name	Affiliation
2	Effect of localized magnetic field perturbation on pedestal and	TBM	Osborne	GA
	ELM characteristics			
3	Effect of the TBM on the LH power threshold and confinement	TBM	Gohil	GA
4	Effect of TBM on energetic particle confinement	TBM	Heidbrink	UC, Irvine
5	Effect of TBM on QH-mode access and EHO characteristics	TBM	Garofalo	GA
6	Effect of TBM on rotation and modifications to L-H threshold, H-mode confinement and ELM control	TBM	Solomon	Princeton U
7	Startup and rampdown with TBM perturbed fields	TBM	Jackson	GA
8	TBM; momentum confinement and intrinsic rotation	TBM	de Grassie	GA
9	Effect of TBM on error field threshold and plasma locking	TBM	Park	Princeton U
10	Effect of TBM on NTV damping of plasma rotation	TBM	Park	Princeton U
11	Alfvén spectral splitting by TBM perturbation	TBM	Spong	ORNL
12	Energetic particle confinement scaling with TBM amplitude	TBM	Spong	ORNL
13	Effect of local ripple structure due to TBM on fast ion losses, pedestal performance and ELMs	TBM	Oyama	Japan Atomic Energy Agency
14	Comparison of the effect of TBM and magnetic ripple on rotation	TBM	Tala	VTT Technical Research Centre
15	Effect of TBM on disruption evolution, mitigation, and RE generation	TBM	Eidietis	GA
16	Dynamic error field correction (DEFC) under TBM perturbation	TBM	In	FAR-TECH, Inc.
17	Which TBM error features affect H-mode?	TBM	Schaffer	GA
18	Influence of TBM on resistive losses during ITER simulated startup	TBM	Leuer	GA
19	TBM Effects on Glow Discharge Cleaning	TBM	Snipes	ITER Cadarache
20	Comparison of TBM effects on L- and H-mode confinement	TBM	Snipes	ITER Cadarache
21	TBM induced toroidal asymmetries	TBM	Rhodes	UCLA
22	Effects of TBM-produced local field perturbations on the onset and nonlinear evolution of ELMs	TBM	Jhang	National Fusion Research Institute
23	Effect of TBM on H-mode scenario	TBM	Saibene	F4E
24	Local correction of TBM error fields and locked mode prevention	TBM	Volpe	U of Wisconsin
25	TBM and trapped particles	TBM	Volpe	U of Wisconsin
26	Use of TBM coils to guide ripple correction optimization by ferromagnetic inserts in ITER	TBM	Loarte- Prieto	ITER Cadarache

1.4. DETAILED LIST OF SCHEDULED EXPERIMENTS

Table VI lists the experiments scheduled during the 2010 experimental campaign (as of December 1, 2009).

Table VI

Detailed list of Scheduled Experiments for the 2010 Experiment Campaign

	stance has of acheduled Experiments for	·	
Date	Title	Area	SL
10/20/09	RMP effect on P_{L-H}	ELM control for ITER	Gohil, P.
10/21/09	Error field threshold-NTM vs torque balance limits	3D fields for ITER	Buttery, R.
10/22/09	Error field threshold-NTM vs torque balance limits	3D fields for ITER	Buttery, R.
10/22/09	RMP effect on P _{L-H}	ELM control for ITER	Gohil, P.
10/23/09	Neon shattered pellet	Rapid shutdown	Jernigan, T.
10/27/09	Advanced inductive with fast wave	Advanced inductive	Politzer, P.
10/28/09	RMP 3D heat flux	ELM control for ITER	Jakubowski, M.
10/29/09	Advanced inductive with fast wave	Advanced inductive	Politzer, P.
10/29/09	RMP 3D heat flux	ELM control for ITER	Jakubowski, M.
10/30/09	Radiative divertor-ELM suppression coupling in H-mode	Core-edge integration	Petrie, T.
11/9/09	Particle balance in H-mode	Hydrogen retention	Unterberg, E.
11/10/09	Turbulent heat flux into SOL	Boundary thermal transport	Boedo, J.
11/11/09	TBM brief survey	Test blanket module mockup	Gohil, P.
11/11/09	TBM and L-H transition	Test blanket module mockup	Gohil, P.
11/12/09	TBM, confinement, transport	Test blanket module mockup	Gohil, P.
11/12/09	TBM and ELM suppression	Test blanket	Evans, T.
11/13/09	Model based current profile control Day 1	module mockup Integrated model based control	Humphreys, D.
11/16/09	Model based current profile control Day 2	Integrated model based control	Humphreys, D.
11/16/09	TBM and ELM suppression	Test blanket module mockup	Evans, T.

11/17/09	TBM, confinement, transport	Test blanket module mockup	Gohil, P.
11/18/09	TBM field for QH-mode access	Torkil Jensen	Garofalo, A.
	with small Co-I _p NBI torque	Award	
11/18/09	TBM and fast ions	Test blanket	Heidbrink, W.
11/10/07	1 Divi and last lons	module mockup	Ticidoffiik, W.
11/19/09	Contingency	Contingency	Fenstermacher, M.
		e i	-
11/19/09	TBM, locking, error field	Test blanket	Reimerdes, H.
4.4.40.0.00	correction	module mockup	T 1 1/2
11/20/09	Contingency	Contingency	Fenstermacher, M.
11/20/09	EMP pacing with AC RMP	ELM control for	Solomon, W.
		ITER	
11/20/09	TBM, locking, error field	Test blanket	Reimerdes, H.
	correction	module mockup	
11/30/09	ITER rampdown scenarios beyond	ITER startup/	Politzer, P.
	the baseline	rampdown	,
12/1/09	EMP pacing with AC RMP	ELM control for	Solomon, W.
12/1/02	zim pacing warre ravir	ITER	Bolollion, ***.
12/2/09	Improved startup for ITER	ITER startup/	Jackson, G.
12/2/07	improved startup for TTER		Jackson, G.
12/2/00	ITED manual array a sounding harray d	rampdown	Dalitman D
12/2/09	ITER rampdown scenarios beyond	ITER startup/	Politzer, P.
10/0/00	the baseline	rampdown	C 1 D
12/3/09	Effect of collisionality on pedestal	Pedestal structure	Groebner, R.
	height, ELM size and turbulence		
12/4/09	Error field threshold-NTM vs	3D fields for	Buttery, R.
	torque balance limits	ITER	
12/4/09	EMP pacing with AC RMP	ELM control for	Solomon, W.
		ITER	
12/7/09	FW coupling development	Advanced	Pinsker, R.
	1 8 1	inductive	,
12/8/09	Investigate disagreements between	Heating and	White, A.
, _, _,	Thomson scattering and ECE	current drive	,
	U		
	measurements in high T _e		
12/0/00	discharges		01.1 1:34
12/8/09	Current driven RWM	RWM physics	Okabayashi, M.
12/9/09	Runaway electron generation and	Disruption	Hollmann, E.
	characterization	characterization	
12/10/09	Turbulence pinch and diffusion	Transport/	Doyle, E.
	mechanisms behind the v^* and η_e	confinement	
	dependence of particle transport		
12/11/09	EC + FW advanced inductive	Advanced	Politzer, P.
	development	inductive	, -
12/14/09	Contingency	Contingency	Fenstermacher, M.
12/14/09	Fully noninductive scenario	SS current	Ferron, J.
12/11/07	development	profiles	1 011 011, 0.
	development	promes	

12/15/09	Fully noninductive scenario development	SS current profiles	Ferron, J.
12/16/09	Contingency	Contingency	Fenstermacher, M.
12/16/09	Investigate disagreements between Thomson scattering and ECE measurements in High T _e discharges	Heating and current Drive	White, A.
12/17/09	Core-edge integration Day 3	Core-edge integration	Petrie, T.
12/18/09	Contingency	Contingency	Fenstermacher, M.
12/18/09	Core-edge integration in hybrid	Core-edge integration	Hudson, B.
1/6/10	Divertor heat flux scaling	Boundary thermal transport	Lasnier, C.
1/6/10	DiMES exposure experiment 1	General plasma boundary	Rudakov, D.
1/7/10	Transport of super-Alfvenic fast ions and comparison with NSTX	Energetic particles	Fredrickson, E.
1/8/10	Contingency	Contingency	Fenstermacher, M.
1/11/10	DiMES exposure experiment 1	General plasma boundary	Rudakov, D.
1/11/10	ITER rampdown scenarios beyond the baseline	ITER starup/ rampdown	Politzer, P.
1/12/10	Cross machine comparison between DIII-D and NSTX on role	Rotation physics	Burrell, K.
1/13/10	of aspect ratio on poloidal rotation Active control of locked modes	NTM dtabilization	Volpe, F.
1/14/10	Fishbone driven energetic particle interaction with RWMs	RWM physics	Okabayashi, M.
1/15/10	Contingency	Contingency	Fenstermacher, M.
1/18/10	SOL heat flux characterization in USN	Boundary thermal transport	Boedo, J.
1/18/10	Interaction of pellets and ELMs	ELM control for ITER	Baylor, L.
1/19/10	Role of gyrokinetic modes in limiting pedestal structure	Pedestal structure	Osborne, T.
1/20/10	Solenoidless startup	General plasma control	Cunningham, G.
1/20/10	AC compensation for feedback	RWM physics	Okabayashi, M.
1/21/10	Fast-ion transport by NTMs and at sawtooth crashes	Energetic particles	Nazikian, R.
1/22/10	Contingency	Contingency	Fenstermacher, M.
1/25/10	Intrinsic rotation drive through turbulence-driven Reynolds stress	Rotation physics	Muller, S.

1/26/10	Test NTV theory of non-resonant magnetic fields	3D fields for ITER	Garofalo, A.
1/27/10	Test of simulations in high confinement, quiescent regime, QH-mode	Transport model validation	Schmitz, L.
1/28/10	RMP ELM suppression with no/low counter rotation	3D fields for ITER	Hudson, B.
1/28/10	Edge harmonic oscillation (EHO) induced transport	3D fields for ITER	Burrell, K.
1/29/10	Contingency	Contingency	Fenstermacher, M.
2/1/10	Stability and transport of low frequency Alfvén modes that interact strongly with thermal ions	Energetic particles	Van Zeeland, M.
2/1/10	Fast-ion transport by many RSAEs and TAEs	Energetic particles	Heidbrink, W.
2/2/10	Heat flux comparison DIII-D vs. C-Mod	Boundary thermal transport	Lasnier, C.
2/3/10	Effect of edge rotation on pedestal height, ELM size and turbulence	Pedestal structure	Hudson, B.
2/4/10	Resistive MHD avoidance in steady state	SS current profiles	Turco, F.
2/5/10	Contingency	Contingency	Fenstermacher, M.
2/8/10	H-mode threshold power and performance, pedestal and ELM characteristics in D ₂ plasma	Hydrogen and helium plasmas	Gohil, P.
2/9/10	H-mode performance, pedestal and ELM characteristics in He plasma	Hydrogen and helium plasmas	Gohil, P.
2/10/10	RMP ELM control in He plasma	Hydrogen and helium plasmas	Evans, T.
2/11/10	3D characteristics in low power H-modes	3D fields for ITER	Schmitz, O.
2/12/10	Contingency	Contingency	Fenstermacher, M.
3/1/10	Enhanced particle transport with RMPs	3D fields for ITER	Reimerdes, H.
3/2/10	Dependence of multi-field turbulence properties and transport on T _e /T _i	Transport model validation	Rhodes, T.
3/3/10	Stationary fully noninductive operation	SS current profiles	Holcomb, C.
3/4/10	Tearing mode structure of 2/1 island in hybrid plasma	Stability physics	La Haye, R.
3/5/10	Contingency	Contingency	Fenstermacher, M.
3/8/10	Matching experiment with C-Mod Type I ELMing regime	Pedestal structure	Groebner, R.

3/9/10	Test of simulations in high confinement, quiescent regime, QH-mode	Transport model validation	White, A.
3/10/10	Fast-ion transport by many RSAEs and TAEs	Energetic particles	Heidbrink, W.
3/10/10	Stability and transport of low frequency Alfvén modes that interact strongly with thermal ions	Energetic particles	Van Zeeland, M.
3/11/10	Steady-state Manager's Reserve Day 1	General SSI	Luce, T.
3/12/10	Contingency	Contingency	Fenstermacher, M.
3/15/10	The role of zonal flows and the Reynolds Stress in triggering the L-H transition	Transport/ confinement	Yan, Z.
3/16/10	Interaction of pellets and RMP ELM Suppression	ELM control for ITER	Commaux, N.
3/16/10	DiMES exposure experiment 1	General plasma boundary	Rudakov, D.
3/17/10	Steady state integration Manager's Reserve Day 2	General SSI	Luce, T.
3/18/10	Contingency	Contingency	Fenstermacher, M.
3/19/10	Runaway electron generation, confinement, and loss (Day 2)	Disruption characterization	Hollmann, E.
3/22/10	Torkil Jensen Award Expt 2 - TBD	Torkil Jensen Award	Hill, D.
3/25/10	Contingency	Contingency	Fenstermacher, M.
3/26/10	RMP suppression of runaway electrons	Rapid shutdown	Hollmann, E.
3/29/10	Impurity injection into runaway electron beam	Rapid shutdown	James, A.
3/30/10	Shell pellet Injection	Rapid shutdown	Hollmann, E.
3/31/10	¹³ C injection preparation for oxygen bake	Hydrogen retention	Allen, S.
4/1/10	Contingency	Contingency	Fenstermacher, M.
4/2/10	Contingency	Contingency	Fenstermacher, M.

1.5. THE 2010 OPERATIONS SCHEDULE

The operations schedule is designed for efficient and safe use of the DIII-D facility. Seventeen calendar weeks of plasma physics operations are scheduled for the fiscal year 2010, including three calendar weeks supported by American Recovery and Reinvestment Act funding. The operations schedule is shown in Fig. 3. Operations in 2010 are carried out 5 days per week for 8.5 hours, except for the two operations weeks in November 2009 during which the tokamak will be run for 11.5 hours per day (8:30 am 8:00 be viewed to pm). The 2010 operations schedule can http://d3dnff.gat.com/Schedules/fy2010Sch.htm. FY2010 operations are scheduled to end on April 2, 2010 so that work can commence on the Long-Torus Opening (LTO II).

In addition to operating the tokamak, maintenance has to be performed and new hardware is being installed to enhance DIII-D capabilities. The schedule calls for these maintenance activities to be carried out during the weeks that the tokamak is not operating.

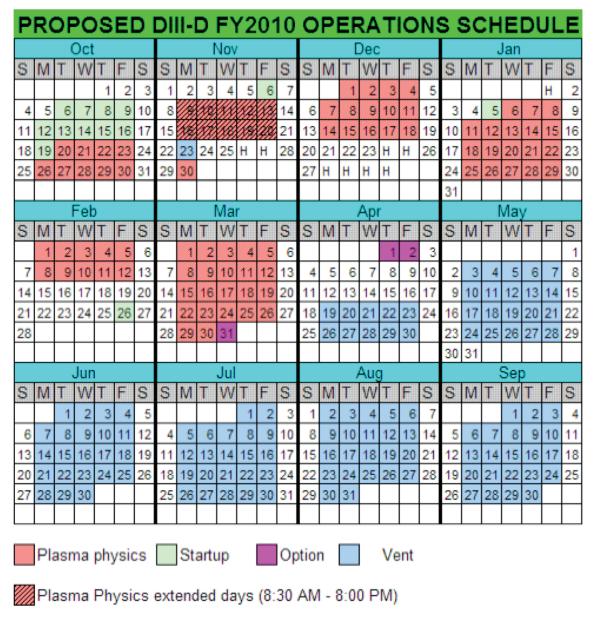


Fig. 3. DIII-D master schedule FY2010 (17-week plan).

ACKNOWLEDGMENT

This is a report of work supported by the U.S. Department of Energy under Cooperative Agreement No. DE-FC02-04ER54698.

APPENDIX A RESEARCH PROPOSALS RECEIVED

ID	Title	Research Area	Name	Affiliation
1	Physics of safety factor resonance for n=3 RMP ELM suppression	ELM control for ITER	Fenstermacher	LLNL
2	NTV versus intrinsic rotation	Physics of non-axisymmetric field effects in support of ITER	deGrassie	GA
3	RMP ELM suppression in ECH H-mode	ELM control for ITER	deGrassie	GA
4	The effect of collisionality on RMP ELM suppression	ELM control for ITER	deGrassie	GA
5	Understand ECH density pumpout	Transport	deGrassie	GA
6	Heat pulse transport in the RMP perturbed boundary	Physics of non-axisymmetric field effects in support of ITER	Schmitz	Juelich
7	RMP effects on boundary plasma potentials, transport and turbulence	ELM control for ITER	Boedo	UCSD
8	ELM velocity and size scaling	General plasma boundary interfaces	Boedo	UCSD
9	ELM characterization and dynamics under RMP	ELM control for ITER	Boedo	UCSD
10	Test q_{95} resonance window for ELM suppression with single I-coil row	ELM control for ITER	Fenstermacher	LLNL
11	Optimized attempt at ELM control with n=3 C-coil	ELM control for ITER	Fenstermacher	LLNL
12	Intrinsic rotation scaling; get the highest β_N possible in an ECH H-mode	Rotation physics (2009)	deGrassie	GA
13	Measure intrinsic rotation size scaling in DIII-D alone	Rotation physics (2009)	deGrassie	GA
14	Measure intrinsic rotation profiles for the bulk ion (He), especially poloidal intrinsic velocity.	Rotation physics (2009)	deGrassie	GA
15	Sensitivity of one vs two I-coils to input torque variation	ELM control for ITER	Fenstermacher	LLNL
16	T _e gradient modulation experiments	Transport model validation	DeBoo	GA
17	High collisionless NBI torque drive for GAMs, aka the VH-mode path?	Transport	deGrassie	GA
18	Impact of rotation on incremental diffusivity in hybrid discharges	Rotation physics (2009)	DeBoo	GA
19	Ion response to T _e heat pulses	Transport	DeBoo	GA
20	Momentum transfer across LCFS	SOL main ion and impurity flows	Boedo	UCSD
21	More SOL flows	SOL main ion and impurity flows	Boedo	UCSD
22	Heat transport in boundary	Thermal transport in the boundary (2010)	Boedo	UCSD
23	Helium transport in advanced operating regimes	Core integration (advanced inductive)	Weisen	CRPP - EPFL

ID	Title	Research Area	Name	Affiliation
24	Powered VFI operation	General plasma control/operations	Hyatt	GA
25	Screening effect on recycling impurities of RMP-induced flows	Physics of non-axisymmetric field effects in support of ITER	Brooks	GA
26	Inboard divertor detachment characterization	Physics of volume recombination and divertor plasma detachment	Leonard	GA
27	Poloidal asymmetry of heat transport in H-mode	Thermal transport in the boundary (2010)	Leonard	GA
28	In/out ELM heat flux asymmetry with counter injection	Thermal transport in the boundary (2010)	Leonard	GA
29	Effect of elongation on disruption runaways	Rapid shutdown schemes for ITER	Granetz	MIT
30	Why don't we see evidence for RMP impact on transport in L-mode?	Physics of non-axisymmetric field effects in support of ITER	Schmitz	Juelich
31	Real-time magnetic and kinetic profile control for advanced tokamak operation on DIII-D	Integrated and model-based control	Moreau	Cadarache
32	Structure of the plasma response to kink resonant perturbations in LSN H-mode		Lanctot	Columbia U
33	Scaling of the q_{95} ELM suppression window with $\beta_{\rm N}$	ELM control for ITER	Evans	GA
34	RMP coil pattern variation to investigate ELM and pump-out physics	ELM control for ITER	Mordijck	UCSD
35	Test and verify safety factor dependence of turb./transp. simulations via multi-scale turb. measurement	Transport model validation	Rhodes	UCLA
36	Data collection for validation of current and temperature profile evolution models	Integrated and model-based control	Walker	GA
37	VFI-less operation	General plasma control/operations	Walker	GA
38	Operations development time	General plasma control/operations	Walker	GA
41	Poloidal asymmetry of SOL flows in DN plasmas	Thermal transport in the boundary (2010)	Brooks	GA
42	Exposure of BW sample	General plasma boundary interfaces	Wong	GA
43	Real time boronization	General plasma boundary interfaces	Wong	GA
44	Nonlinearity of thermal conductivity	Transport model validation	Gentle	U of Texas
45	High-resolution heat flux measurement at the strikepoint	Thermal transport in the boundary (2010)	Lasnier	LLNL
46	Plasma exposure of tungsten nano- scopic "fuzz" layers on DIMES	General plasma boundary interfaces	Baldwin	UCSD

ID	Title	Research Area	Name	Affiliation
47	ECCD triggered 4/3 NTM for	Core integration (advanced	Hyatt	GA
	predictable high performance Hybrid access	inductive)		
48	Pellet pacing of ELMs in low toroidally rotating plasmas	ELM control for ITER	Gohil	GA
49	Dependence of the H-L transition on toroidal rotation	Transport	Gohil	GA
50	The scaling of the low density limit for threshold power	Transport	Gohil	GA
51	Confinement and H factors at input powers close to threshold power	Transport	Gohil	GA
52	FW-only L/H transition power study	General ITER physics	Pinsker	GA
53	FW coupling and electron heating in ELM-stabilized H-modes with RMPs - continued	ELM control for ITER	Pinsker	GA
54	4th and 6th harmonic FW synergy studies	Heating and current drive	Pinsker	GA
55	Heat transport in the tokamak SOL – FY10 Joint Facility Research Target	Thermal transport in the boundary (2010)	Maingi	ORNL
56	Exposure of tungsten nano-scopic "fuzz" on DIMES	General plasma boundary interfaces	Baldwin	UCSD
57	Access to H-mode during ramp up/down phases	ITER scenario access, startup and ramp down	Gohil	GA
58	Direct measurement of E_rad corrugation at rational surfaces	Transport	Petty	GA
59	Core transport barriers and "bateared" T _e profiles in EC-heated discharges	Transport	Austin	U of Texas
60	High beta, steady-state hybrids	Assess steady-state current profiles for optimum performance	Petty	GA
61	Measurement of particle transport coefficients in L-mode and RMP plasmas	Physics of non-axisymmetric field effects in support of ITER	Gentle	U of Texas
62	Runaway electron strikepoint determination	Disruption characterization	James	UCSD
63	H-mode power threshold in helium plasmas	Hydrogen and helium plasmas	Gohil	GA
64	Fueling in helium plasmas	Hydrogen and helium plasmas	Gohil	GA
65	Use of ECCD to create non-thermal seed for runaway generation studies	Disruption characterization	James	UCSD
66	Pellet induced H-mode in hydrogen or helium plasmas	Hydrogen and helium plasmas	Gohil	GA
67	RMP ELM-control in hydrogen or helium plasmas	Hydrogen and helium plasmas	Gohil	GA
68	QH-mode in hydrogen or helium plasmas	Hydrogen and helium plasmas	Gohil	GA
69	Higher β ELM-suppressed hybrids	Core-edge integration	Petty	GA

ID	Title	Research Area	Name	Affiliation
70	Hybrid β limit at low rotation	Core integration (advanced inductive)	Petty	GA
71	ECCD in high β poloidal plasmas	Heating and current drive	Petty	GA
72	Dependence of stiffness on elongation	Transport model validation	Petty	GA
73	Measurement of inductive poloidal current	Heating and current drive	Petty	GA
74	Extreme off-axis ECCD	Heating and current drive	Petty	GA
75	Sustained monster sawteeth	Energetic particles (2010)	Petty	GA
76	Simulation of alpha channeling current drive	Energetic particles (2010)	Petty	GA
77	Reducing the power loads to the divertor in ELM-supressed phase	Physics of non-axisymmetric field effects in support of ITER	Jakubowski	Juelich
78	Separating rotational shear and ρ^* scaling effects on transport	Transport model validation	Petty	GA
79	Modulation of bootstrap current	Heating and current drive	Petty	GA
80	Electron heat pinch	Transport	Petty	GA
81	Pedestal width scaling with toroidal field direction	Pedestal structure	Leonard	GA
82	ITER pedestal dependence on separatrix shape	ITER demonstration discharges	Leonard	GA
83	RMP enhanced particle transport threshold dependence on collisionality	ELM control for ITER	Leonard	GA
84	Density dependence of pedestal width scaling	Pedestal structure	Leonard	GA
85	Wide density pedestal beyond the neutral penetration depth	Pedestal structure	Leonard	GA
86	L-H transition dependence on divertor detachment	Pedestal structure	Leonard	GA
87	Test of neoclassical toroidal viscosity theory using modulated I-coil currents	Rotation physics (2009)	Burrell	GA
88	Feedback control of q_{\min} using B_{T} ramping	Core integration (steady state)	Petty	GA
89	Main ion poloidal rotation measurements in helium plasmas	Rotation physics (2009)	Burrell	GA
90	Simultaneous suppression of 3/2 and 4/3 NTM with ECCD	Core integration (advanced inductive)	Petty	GA
91	Prompt torque and zonal flow damping	Rotation physics (2009)	Burrell	GA
92	Test neoclassical poloidal rotation prediction as a function of toroidal rotation speed	Rotation physics (2009)	Burrell	GA
93	Diagnostic spatial cross calibration using edge sweeps in QH-mode	ELM control for ITER	Burrell	GA
94	Dependence of intrinsic rotation on density/safety factor	Rotation physics (2009)	Petty	GA
95	T _e /T _i scaling of electron heat transport in ETG-dominated H-mode plasmas	Transport model validation	Schmitz	UCLA

ID	Title	Research Area	Name	Affiliation
	Divertor ELM energy deficit and first wall ELM energy fluxes	General plasma boundary interfaces	Pitts	ITER Cadarache
	Initial development of an integrated approach for rapid shutdown	Rapid shutdown schemes for ITER	Walker	GA
	Determination of stochastic heat transport by RMP in a non-rotating plasma	ELM control for ITER	Hudson	Oak Ridge Associated Universities
	Effect of magnetic stocasticity on bootstrap current	ELM control for ITER	Hudson	Oak Ridge Associated Universities
100	Effect of plasma rotation on RMP	ELM control for ITER	Hudson	Oak Ridge Associated Universities
	Dependence of ITER shape on effectiveness of RMP ELM suppression.	ELM control for ITER	Hudson	Oak Ridge Associated Universities
102	Fuel ion mass scaling of turbulence and transport	Transport model validation	McKee	U of Wisconsin
103	Pure ECH divertor power widths	Thermal transport in the boundary (2010)	Pitts	ITER Cadarache
104	Physics of NRMF torque	Physics of non-axisymmetric field effects in support of ITER	Garofalo	GA
	Enhanced erosion from deuterium saturated materials during ELMs	Hydrogenic retention (2009)	Umstadter	UCSD
106	ECCD within magnetic islands	Heating and current drive	Prater	GA
	Introduction of pre-characterized dust in divertor and SOL	General plasma boundary interfaces	Rudakov	UCSD
	RMP particle sources and sinks with helium discharges	Physics of non-axisymmetric field effects in support of ITER	Unterberg	ORISE
	Improving long-distance FW coupling to H-mode plasmas with gas puffing	Heating and current drive	Pinsker	GA
110	Dependence of high-k turbulence on ExB shear	Transport	Petty	GA
111	Develop hybrid QH-mode	ELM control for ITER	Burrell	GA
	How do zonal flow-induced shear layers affect electron transport?	Transport	Schmitz	UCLA
	Optimized plasma shape for RMP ELM suppression	ELM control for ITER	Petty	GA
114	Imaging the RMP stochastic boundary	Physics of non-axisymmetric field effects in support of ITER	Unterberg	ORISE
	RMP ELM suppression at the NTV offset rotation	ELM control for ITER	Petty	GA
	Quantification of the requirements for ELM suppression by RMP from off midplane coils		Kirk	UKAEA
	Study transient neutral particle burst transport in RMP perturbed boundary	ELM control for ITER	Schmitz	Juelich

ID Title	Research Area	Name	Affiliation
118 Stabilization of ICRF-induced gian sawteeth by suppressing core-	t Energetic particles (2010)	Kramer	PPPL
localized TAE activity 119 Exploration of He gas puff imaging for measurement of 2D electron density and temperature fields	General plasma boundary interfaces	Schmitz	Juelich
120 Disruption statistics and prediction	Disruption characterization	Wesley	GA
121 Optimized low-Z and mixed gas MGI	Rapid shutdown schemes for ITER	Wesley	GA
122 Dust generation from deposited layers and leading edges	General plasma boundary interfaces	Rudakov	UCSD
123 Thermal energy scan for low-Z MGI	Rapid shutdown schemes for ITER	Wesley	GA
124 2/1 NTM stab by ECCD in ITER Demo discharges	NTM stabilization including rotation dependence	La Haye	GA
125 Dependence of C deposition and D co-deposition rates on the surface temperature	Hydrogenic retention (2009)	Rudakov	UCSD
126 Transient divertor reattachment and detachment control	I ITER demonstration discharges	Pitts	ITER Cadarache
127 Effect of islands on ECCD	Heating and current drive	Petty	GA
128 ELM filament propagation through SOL and interaction with main chamber wall	General plasma boundary interfaces	Rudakov	UCSD
129 Testing the sensitivity of GYRO- calculated turbulence to non- Maxwellian distribution functions	General integrated modeling	White	UCLA
130 Investigate disagreements between Thomson scattering and ECE measurements in high T_e discharge	_	White	UCLA
131 DiMES erosion measurements with detached plasmas induced by argor injection	• •	Rudakov	UCSD
132 New optimal plasma shape for AT scenario?	Core integration (steady state)	Petty	GA
133 Comparison of phase between density and electron temperature fluctuations with GYRO prediction	Transport model validation	White	UCLA
134 Fast pellet mass drift physics experiment	General ITER physics	Commaux	Oak Ridge Associated Universities
135 Influence of the density on the RMP ELM suppression	ELM control for ITER	Commaux	Oak Ridge Associated Universities
136 Pellet fueling in high density ITER like discharges	- General ITER physics	Commaux	Oak Ridge Associated Universities
137 Determination of particle transport using pellet injection	Transport	Commaux	Oak Ridge Associated Universities

ID Title	Research Area	Name	Affiliation
138 Validation of an atomic model for	Heating and current drive	Antoniuk	ORISE
the motional Stark effect spectrum.			
139 B-Stark validation	Heating and current drive	Antoniuk	ORISE
140 ELM pacing using the new pellet dropper configuration	ELM control for ITER	Baylor	ORNL
141 Pellet ELM triggering physics study	ELM control for ITER	Baylor	ORNL
142 RMP-pellet compatibility	ELM control for ITER	Baylor	ORNL
143 β scaling of multi-field, multi-scale turbulence on DIII-D	Transport model validation	White	UCLA
144 Can the RMP coils eliminate ELMs from SNs with BxVB out of the divertor?	ELM control for ITER	Petrie	GA
145 Comparison of impurity screening between ELMing and ELM- suppressed plasmas	ELM control for ITER	Petrie	GA
146 Is the radiating divertor scenario compatible with ELM suppression?	ELM control for ITER	Petrie	GA
147 Compatibility of ELM suppression with the radiating divertor in the hybrids	ELM control for ITER	Petrie	GA
148 What is the nature of the heat flux outside a slot divertor and are particle drifts important?	Thermal transport in the boundary (2010)	Petrie	GA
149 Realistic test of the compatibility of radiative divertor with AT plasma operation with RMP	Core-edge integration	Petrie	GA
150 Further development of co-NBI QH-mode	ELM control for ITER	Burrell	GA
151 Optimal location for fueling pumped DN plasmas	SOL main ion and impurity flows	Petrie	GA
152 Effect of particle drifts on deuteron and impurity exhaust in an ITER-like configuration	ITER demonstration discharges	Petrie	GA
153 Heat flux reduction in double-null plasmas	Thermal transport in the boundary (2010)	Petrie	GA
154 Active impurity removal from the core plasma	Core-edge integration	Petrie	GA
155 Investigate QH-mode without EHO	ELM control for ITER	Burrell	GA
156 Joint NSTX/DIII-D poloidal rotation experiment	Rotation physics (2009)	Burrell	GA
157 Measuring the structure of tearing modes	Stability	Petty	GA
158 FW coupling and electron heating in QH mode	ELM control for ITER	Pinsker	GA
159 Expand the high ℓ_i , $\beta_N > 4$ operating regime through instability avoidance and higher heating power		Ferron	GA
160 Maintaining high ℓ_i at high β_N using RMP and near-axis current drive	Core integration (steady state)	Ferron	GA

ID	Title	Research Area	Name	Affiliation
161	Cross-cutting experiment to address LH transition physics and formation of edge shear layer		Rhodes	UCLA
162	Dependence of confinement and stability on toroidal rotation in high ℓ_i discharges	Core integration (steady state)	Ferron	GA
163	Extend the $f_{NI} = 1$ phase in the steady-state scenario and maintain q_{min} above 1.5	Core integration (steady state)	Ferron	GA
164	Routinely use feedback control of q_{\min} during the I_p ramp up	Core integration (steady state)	Ferron	GA
165	Addressing the physics of ECH density pump-out via multi-scale/field turbulence measurements	Transport	Rhodes	UCLA
166	Clarification of minimum EC- driven current for complete NTM stabilization	NTM stabilization including rotation dependence	Isayama	JAERI
167	Assess the bootstrap current fraction as a function of the q profile in steady-state discharges	Assess steady-state current profiles for optimum performance	Ferron	GA
168	Detailed measurement of NTM island structure	Stability	Isayama	JAERI
169	Multi-scale, multi-field turbulence in reversed shear and ITB plasmas	Transport	Rhodes	UCLA
170	Beta limit and bootstrap current fraction in ITER steady-state scenario discharges	ITER demonstration discharges	Ferron	GA
171	Improve the ability to produce the exact, scaled ITER discharge shape in DIII-D	ITER demonstration discharges	Ferron	GA
172	Establish the requirements for 2/1 tearing mode stabilization by broadly deposited ECCD	Core integration (steady state)	Ferron	GA
173	Turbulence and transport dependence on ρ_* utilizing working gas species	Transport model validation	Rhodes	UCLA
174	Maximize the high noninductive fraction duration in the ITER shape discharges	ITER demonstration discharges	Ferron	GA
175	High-power modulated ECH to assess power deposition and heat transport models	Transport	Austin	U of Texas
176	Turbulence reduction via nonresonant magnetic field-driven velocity shear	Rotation physics (2009)	McKee	U of Wisconsin
177	Integrated diagnostics tool for non-axisymmetric MHD mode internal structure		Bogatu	FAR-TECH, Inc.
178	Test neutral penetration model for pedestal density width	Pedestal structure	Groebner	GA
179	Test EPED1 pedestal model at high density	Pedestal structure	Groebner	GA

ID	Title	Research Area	Name	Affiliation
	ELM pacing with n=0 I-coil configuration	ELM control for ITER	West	GA
181	Turbulence and transport scaling with T_e/T_i in low rotation L&H modes	Transport model validation	McKee	U of Wisconsin
	Dynamic error field correction for ITER	Physics of non-axisymmetric field effects in support of ITER	Strait	GA
	Comparison of resonant and non- resonant n=1 error fields	Physics of non-axisymmetric field effects in support of ITER	Strait	GA
	Dependence of halo currents on plasma current and q_{95}	Disruption characterization	Strait	GA
	Study of edge plasma turbulence with RMP	Thermal transport in the boundary (2010)	Krasheninnikov	UCSD
	Physics of sawtooth suppression in hybrid discharge	Core integration (advanced inductive)	Suzuki	JAEA
	SOL and divertor behavior in hydrogen	Hydrogen and helium plasmas	Pitts	ITER Cadarache
	Rotation effect on high β_p small ELM regimes	ELM control for ITER	Oyama	Japan Atomic Energy Agency
	Controllability of pedestal and ELM characteristics by edge ECH/ECCD	ELM control for ITER	Oyama	Japan Atomic Energy Agency
	Edge FW power loss versus edge density	Heating and current drive	Hosea	Princeton U
	DIII-D/JET steady-state scenario comparison	Core integration (steady state)	Challis	UKAEA
	Comparison of rotation effects on Type I ELMing H-mode in JT-60U and DIII-D	ELM control for ITER	Kamada	JAEA
	Rotation and beta effects on ELM suppression/control by RMPs	ELM control for ITER	Loarte	ITER
	Requirements of resonance window for ELM suppression with constant I_p	ELM control for ITER	Loarte	ITER
195	Fast-ion driven MHD instabilities and fast-ion transport in ASDEX Upgrade similar plasmas	Energetic particles (2010)	Garcia-Munoz	IPP
	FILD commissioning	Energetic particles (2010)	Garcia-Munoz	IPP
	Fast-ion driven MHD instabilities and fast-ion transport in ASDEX Upgrade similar plasmas	Energetic particles (2010)	Garcia-Munoz	IPP
	Stability and electron thermal transport effects of high-n modes in QH plasmas	Energetic particles (2010)	Nazikian	PPPL
199	Effect of low-n RSAEs, TAEs on electron thermal transport	Energetic particles (2010)	Nazikian	PPPL
200	Stability and structure of the E-GAM	Energetic particles (2010)	Nazikian	PPPL
201	Validation of integrated modeling	General integrated modeling	Budny	PPPL
202	Validation of integrated modeling	General integrated modeling	Budny	PPPL

ID Title	Research Area	Name	Affiliation
203 Input power requirements for access		Alberto	ITER
to H-mode, Type III ELMy H-mode and high confinement H-modes	•		
204 Pedestal scaling for discharges dominated by pellet fueling	Pedestal structure	Loarte	ITER
205 Effect of TF ripple on pedestal plasma studied by radial shifts	Pedestal structure	Loarte	ITER
206 H-mode/pedestal physics and particle transport ECRH heated Type I ELMy H-modes	General ITER physics	Loarte	ITER
207 Comparison of rotation in ECCD plasmas to C-Mod LHCD	Rotation physics (2009)	Rice	MIT PSFC
208 Generation of current hole by ECCD alone and its conversion to AT plasma	Torkil Jensen Award for innovative research	Shiraiwa	PSFC, MIT
209 Effects of mixed plasma exposure on D retention and surface damage of tungsten	Hydrogen and helium plasmas	Ueda	Osaka U, Japan
210 Comparison of rotation effects on Type I ELMing H-mode in JT-60U and DIII-D	Pedestal structure	Kamada	Japan Atomic Energy Agency
211 Role of ECRF on toroidal rotation profile	Rotation physics (2009)	Yoshida	JAEA
212 Transport during transients in ITER	Transport model validation	Alberto	ITER
213 NSTX/DIII-D TAE avalanche and RSAE similarity experiment	Energetic particles (2010)	Fredrickson	PPPL
214 Model-based current profile control during the ramp-up phase in DIII-D		Schuster	Lehigh U
215 Model-based current and kinetic profile control during the flattop phase in DIII-D	Integrated and model-based control	Schuster	Lehigh U
216 Shape effects on ℓ_i during ITER-like current ramp down	ITER scenario access, startup and ramp down	Casper	LLNL
217 Heating, H-to-L transition and limited plasma effects on ℓ_i during ITER-like current ramp down	ITER scenario access, startup and ramp down	Casper	LLNL
218 Generation of ring of relativistic electrons	Torkil Jensen Award for innovative research	Prater	GA
219 Rotation dependence of hybrid tearing β limit and ECRH control requirements	NTM stabilization including rotation dependence	Buttery	UKAEA
220 Rotation dependence of hybrid tearing β limit and ECRH control requirements	Core integration (advanced inductive)	Buttery	UKAEA
221 Two point q =3.1 "ITER Reference" scans for baseline scenario β and error field limits	ITER demonstration discharges	Buttery	UKAEA
222 Two point q =3.1 "ITER Reference" scans for baseline scenario β and error field limits	Physics of non-axisymmetric field effects in support of ITER	Buttery	UKAEA

ID Title	Research Area	Name	Affiliation
223 Two point q =3.1 "ITER Reference"	Stability	Buttery	UKAEA
scans for baseline scenario β and error field limits			
224 ITB torque scan	Transport	Greenfield	GA
225 Error field sensitivity of low torque	_	Buttery	UKAEA
intermediate β_N plasmas	field effects in support of ITER	,	
226 ITB dynamics while changing between pressure gradient and rotation dominated ExB shear	Transport	Greenfield	GA
227 Scaling of baseline scenario error field sensitivity towards ITER	Physics of non-axisymmetric field effects in support of ITER	Buttery	UKAEA
228 One shot 2/1 island size dependence on rotation	Stability	Buttery	UKAEA
229 Disruption forces	Disruption characterization	Greenfield	GA
230 Looking for the upturn of NTM thresholds with strong counter rotation to test NTM physics	Stability	Buttery	UKAEA
231 ELM suppression by RMPs at ITER-like additional heating level	ELM control for ITER	Loarte	ITER
232 ELM suppression by RMPs at low and high densities and associated pedestal/divertor behavior	ELM control for ITER	Loarte	ITER
233 ELM suppression by RMPs during transient phases of discharges	ELM control for ITER	Loarte	ITER
234 Localization of ripple-field induced fast-ion losses	Physics of non-axisymmetric field effects in support of ITER	Kramer	PPPL
235 Impact of a mockup ferromagnetic test blanket module on plasma operations in DIII-D	Physics of non-axisymmetric field effects in support of ITER	Snipes	ITER Organization
236 Characterization of H-to-L and L-to-H transitions and control in ITER shape	ITER scenario access, startup and ramp down	Casper	LLNL
237 Destabilization of fast particle stabilized sawteeth in ITER-like baselines for NTM avoidance	Energetic particles (2010)	Buttery	UKAEA
238 Quantify effects of test blanket module on performance	Physics of non-axisymmetric field effects in support of ITER	Greenfield	GA
239 Quantify effects of test blanket module on performance	Energetic particles (2010)	Greenfield	GA
240 Disruption mitigation by real time control of locked modes	ITER scenario access, startup and ramp down	Buttery	UKAEA
242 Disruption mitigation by real time control of locked modes	Torkil Jensen Award for innovative research	Buttery	UKAEA
243 Evaluation of diamond as a plasma facing material	General plasma boundary interfaces	Lisgo	UKAEA
244 Characterization of heat loads due to Type-I ELMs	ELM control for ITER	Jakubowski	Juelich
245 Aspect ratio scaling of Alfvén eigenmode structure and avalanche transport	Energetic particles (2010)	Crocker	UCLA

ID Title	Research Area	Name	Affiliation
246 Validation of code predictions for the sensitivity of turbulence and transport to T_e/T_i ratio	Transport model validation	White	UCLA
247 Impurity and radiation asymmetry during massive gas injection disruption mitigation	Disruption characterization	Whyte	Massachusetts Institute of Technology
248 Study of sawtooth physics by ECE	I Stability	Park	Pohang U of Science and Technology
249 O-bake of DIII-D + ¹³ CH ₄ -trace experiment re tritium recovery in ITER	Hydrogenic retention (2009)	Stangeby	U of Toronto
250 VDE and VUD characterization for ITER	Disruption characterization	Wesley	GA
251 Snowflake divertor	Core-edge integration	Umansky	LLNL
252 Characterization of power fluxes to PFCs during VDEs, ITER-relevant disruptions		Loarte	ITER
253 Beam-ion transport by plasma turbulence	Energetic particles (2010)	Heidbrink	UC, Irvine
254 Pitch resonant vs non-resonant perturbation effects on pedestal and ELM	ELM control for ITER	Moyer	UCSD
255 Runaway discharge position control and controlled loss of runaway electrons	l Rapid shutdown schemes for ITER	Loarte	ITER
256 Revisiting the current limit at q_{95} ~2 in RWM perspective	Torkil Jensen Award for innovative research	In	FAR-TECH, Inc.
257 Beam-ion transport by plasma turbulence	Energetic particles (2010)	Heidbrink	UC, Irvine
258 Investigate the relative roles of density and collisionality in RMP ELM control response	ELM control for ITER	Moyer	UCSD
259 Giant sawteeth that never crash	Energetic particles (2010)	Heidbrink	UC, Irvine
260 Study of NTM physics by ECEI system	NTM stabilization including rotation dependence	Park	Pohang U of Science and Technology
261 RMP field penetration studies	Physics of non-axisymmetric field effects in support of ITER	Moyer	UCSD
262 Fast-ion transport by sawteeth	Energetic particles (2010)	Heidbrink	UC, Irvine
263 POP test of a low-Z gas IRD	Rapid shutdown schemes for ITER	Wesley	GA
264 Measurement of structure, flows, and turbulence associated with tearing mode islands	Stability	Carter	UCLA
265 Image 3D structure in RMP H-modes	ELM control for ITER	Moyer	UCSD
266 Validate Wingen magnetic field model using pedestal ECH	ELM control for ITER	Moyer	UCSD
267 Deep pellet fueling of RMP H-modes	ELM control for ITER	Moyer	UCSD

ID	Title	Research Area	Name	Affiliation
268	Deep core fueling in ELM suppressed RMP H-modes using	Torkil Jensen Award for innovative research	Evans	GA
269	D ₂ filled hollow shell pellets Low rotation ITER scenarios — impact on confinement and fusion	ITER demonstration discharges	Doyle	UCLA
270	performance Solenoidless startup studies in DIII-D	Torkil Jensen Award for innovative research	Cunningham	MAST
271	SOL characteristics and PFC energy loads during ramp-up/down	Thermal transport in the boundary (2010)	Pitts	ITER Cadarache
272	Effect of plasma rotation upon MGI impurity assimilation	Rapid shutdown schemes for ITER	Eidietis	GA
273	Study of runaway beam loss into wall	Disruption characterization	Yu	UCSD
274	Ion gyroradius scaling of the coupled turbulence/zonal flow system at the LH transition	Transport	Yan	UCSD
275	Effect of NTMs upon shell pellet deposition	Rapid shutdown schemes for ITER	Eidietis	GA
276	Image NTM structure during ECCD growth and suppression	Stability	Yu	UCSD
277	Benchmark measurements of NTM island structure using fast camera and ECE	Stability	Yu	UCSD
278	Effect of mode coupling on NTM dynamics	Stability	Yu	UCSD
279	Real-time β control via NTM width modulation	General plasma control/operations	Eidietis	GA
280	Sawtooth instability studies with gas puffing for imaging	Stability	Yu	UCSD
281	Measurements of spiral MHD structure induce by pellet injection	Stability	Yu	UCSD
282	He Startup in DIII-D with transition to D/H plasma in I _p ramp	Hydrogen and helium plasmas	Leuer	GA
283	Confirm that flow shear acts to reduce NTM island size	Stability	La Haye	GA
284		Physics of non-axisymmetric field effects in support of ITER	Lanctot	Columbia U
285	Fast shutdown with shell pellets	Rapid shutdown schemes for ITER	Hollmann	UCSD
287	Current-driven RWM mode structure time evolution and IPEC analysis	RWM physics including rotation dependence	Okabayashi	Princeton U
288	Measurements of hydrogenic retention and isotope exchange using H ₂ vs D ₂ fueling.	Hydrogenic retention (2009)	Hollmann	UCSD
289	Effect of hot ions on RWM stability	RWM physics including rotation dependence	Reimerdes	Columbia U
290	Comparison of RWM stability in DIII-D and NSTX	RWM physics including rotation dependence	Reimerdes	Columbia U

ID	Title	Research Area	Name	Affiliation
291	Prep-101: current-driven RWM tool refinements of C- and I-coil dynamic error field correction	RWM physics including rotation dependence	Okabayashi	Princeton U
292	Real-time stability measurement using active MHD spectroscopy	RWM physics including rotation dependence	Reimerdes	Columbia U
293	DIII-D and NSTX m/n=2/1 NTM comparison allows testing aspect ratio physics (including rotation)	Stability	La Haye	GA
294	Identification, extraction, and reallocation of DEFC in RWM stabilization at $q_{95}\sim4$	RWM physics including rotation dependence	In	FAR-TECH, Inc.
295	ITER startup studies in DIII-D	ITER scenario access, startup and ramp down	Jackson	GA
296	Feedback stabilization and mode helicity of current-driven RWM at $q_{95}\sim3$	RWM physics including rotation dependence	In	FAR-TECH, Inc.
297	Development of ITER ramp down scenarios without VDEs or disruptions	ITER scenario access, startup and ramp down	Jackson	GA
298	Particle pinch in H-Mode pedestal?	Pedestal structure	Callen	U of Wisconsin
299	Fast-ion effects on intrinsic rotation (combined rf exp. on rotation, core TAEs and sawtooth stabilization)	Rotation physics (2009)	Nave	Instituto Superior Tecnico
300	Investigate scaling of residual stress/effective intrinsic torque with edge pressure gradient	Rotation physics (2009)	Solomon	Princeton U
301	Fully integrated ITER operational scenarios	ITER scenario access, startup and ramp down	Doyle	UCLA
302	Relationship between momentum and particle pinch and dependence on collisionality	Rotation physics (2009)	Solomon	Princeton U
303	Measurement of enhanced jxb torque driven by enhanced fast ion transport	Energetic particles (2010)	Solomon	Princeton U
304	Hybrid operation with electron heating and $T_e \sim T_i$	Core integration (advanced inductive)	Doyle	UCLA
305	Active MHD spectroscopy for unstable RWM using feedback with complex gains	RWM physics including rotation dependence	In	FAR-TECH, Inc.
306	Sawtooth crash flow generation, damping, and multiscale, multifield turbulence response	Torkil Jensen Award for innovative research	Hillesheim	UCLA
307	Maintenance of high β reverse shear discharges with ITBs	Assess steady-state current profiles for optimum performance	Doyle	UCLA
308	Pedestal scaling in hydrogen plasmas	Hydrogen and helium plasmas	Snyder	GA
309	Physics of the super X divertor	General plasma boundary interfaces	Garofalo	GA
310	Fast ion instability validation plasmas	Energetic particles (2010)	Van Zeeland	GA

ID Title	Research Area	Name	Affiliation
311 Pedestal studies in helium plasmas	Hydrogen and helium plasmas	Snyder	GA
511 1 edestal stadies in heriam plasmas	Try drog en una nenam plasmas	Silydel	071
312 Energetic-particle driven RWM: comparison DIII-D/JT60-U with the emphasis of residual error field	RWM physics including rotation dependence	Matsunaga	Japan Atomic Energy Agency
313 Test ELM suppression by RMPs in counter-rotating plasmas	ELM control for ITER	Nardon	UKAEA
314 Investigate the effect of a slow I-coils ramp down after a fast initial rampup	ELM control for ITER	Nardon	UKAEA
315 MHD induced fast ion transport	Energetic particles (2010)	Van Zeeland	GA
317 β induced Alfvén acoustic eigenmode (BAAE) studies	Energetic particles (2010)	Van Zeeland	GA
318 ρ _* scaling of Alfvénic activity using hydrogen discharge	Energetic particles (2010)	Van Zeeland	GA
319 L-H transition mechanism study through comparison of different triggers: NBI, ECH, and sawtooth	Transport	Wang	UCLA
320 Edge low-density locked mode (LDLM) I. mode penetration at electron velocity-reversal surface	Physics of non-axisymmetric field effects in support of ITER	Waelbroeck	IFS, U. Texas
321 RWM stability with zero neutral beam torque	RWM physics including rotation dependence	Strait	GA
322 Study of high temperature pedestals in JET	ELM control for ITER	Solano	JET and Ciemat, Spain
323 Edge low-density locked mode (LDLM) II: locked EHO	Physics of non-axisymmetric field effects in support of ITER	Waelbroeck	IFS, U. Texas
324 Modification of plasma rotation using NTV torque	Rotation physics (2009)	Sabbagh	Columbia and NSTX
325 Super H-Mode	Torkil Jensen Award for innovative research	Snyder	GA
326 ITER baseline H-mode access	ITER scenario access, startup and ramp down	Wang	UCLA
327 Hyper-velocity high-density ⁶⁰ C-Fullerene plasma jet for disruption mitigation	Rapid shutdown schemes for ITER	Bogatu	FAR-TECH, Inc.
328 Power hysteresis in ITER baseline scenario	ITER demonstration discharges	Wang	UCLA
329 ELM-driven RWM: comparison between DIII-D and JT-60U	RWM physics including rotation dependence	Okabayashi	Princeton U
330 Scaling of conventional H-mode power hysteresis in DIII-D	Transport	Wang	UCLA
331 Multiple low-n RWM identification and feedback control	RWM physics including rotation dependence	In	FAR-TECH, Inc.
332 Pedestal variation with collisionality	Pedestal structure	Snyder	GA
333 Low radial electric field For maximum NTV	Physics of non-axisymmetric field effects in support of ITER	Cole	U of Wisconsin

ID Title	Research Area	Name	Affiliation
334 Taking ITER baseline	ITER demonstration discharges	Doyle	UCLA
demonstration discharges to more reactor relevant conditions			
335 Eigenmode model-based n=1 RWM feedback control with Kalman filte		In	FAR-TECH, Inc.
336 ELM pacing driven by non-resonant magnetic fields	ELM control for ITER	Solomon	Princeton U
337 n _e and T _e fluctuation level and radial correlation length in both low and high field side of L-mode	Transport model validation	Wang	UCLA
338 Test of kinetic ballooning mode constrained pedestal	Pedestal structure	Snyder	GA
339 Can we prevent locked mode from being locked?	Physics of non-axisymmetric field effects in support of ITER	In	FAR-TECH, Inc.
340 Catastrophic MHD-affiliated non-axisymmetric fields	Physics of non-axisymmetric field effects in support of ITER	In	FAR-TECH, Inc.
341 n=1 braking in counter rotation	Physics of non-axisymmetric field effects in support of ITER	Reimerdes	Columbia U
342 Pedestal optimization with ELM suppression	Pedestal structure	Snyder	GA
343 Validation of FIDA upgrade in quiet plasma	Energetic particles (2010)	Muscatello	UC, Irvine
344 Validation of transport elongation scalings	Transport model validation	Holland	UCSD
345 RWM stability above no-wall limit in AT plasmas with $q\sim2$ and near zero rotation	RWM physics including rotation dependence	Okabayashi	Princeton U
346 Tungsten surface treatments for thermography	General plasma boundary interfaces	Lasnier	LLNL
347 Rotate RMP perturbation to spread the divertor heat flux	Physics of non-axisymmetric field effects in support of ITER	Lasnier	LLNL
348 Dependence of pedestal on heating method	Pedestal structure	Groebner	GA
349 Feedback from t=0: developing DEFC from t=0	RWM physics including rotation dependence	Okabayashi	Princeton U
350 Validation of R/L _{Te} Transport scalings	Transport model validation	Holland	UCSD
351 Rotation dependence of the LH power threshold in ITER & C-Mod like configurations	Rotation physics (2009)	McKee	U of Wisconsin
352 Particle Exhaust from RMP ELM suppressed LSN discharges vs X-point height	ELM control for ITER	Unterberg	ORISE
353 Measurement of error field penetration/shielding with slowly rotating n=2 fields	Physics of non-axisymmetric field effects in support of ITER	Reimerdes	Columbia U
354 Kink mode-resonant windows in q_{95} for n=3 fields with even and odd parity	Physics of non-axisymmetric field effects in support of ITER	Reimerdes	Columbia U
355 Target plate profiles during ELM suppression	ELM control for ITER	Watkins	Sandia National Lab

ID	Title	Research Area	Name	Affiliation
356	Type III ELM heat flux profile and scaling	Thermal transport in the boundary (2010)	Lasnier	LLNL
357	Effect if RMP strength on pedestal height	ELM control for ITER	Groebner	GA
358	Burning plasma simulator with control via pedestal	Integrated and model-based control	Snyder	GA
359	Critical v* for density pumpout in ITER	Physics of non-axisymmetric field effects in support of ITER	Joseph	UCSD
360	The RMP plasma edge and impurity control	ELM control for ITER	Watkins	Sandia National Lab
361	Compatibility of RMP ELM suppression with large NRMF torque	Physics of non-axisymmetric field effects in support of ITER	Garofalo	GA
362	Target plate heat flux, sheath power transmission factor, and power accounting	General plasma boundary interfaces	Watkins	Sandia National Lab
363	Sheath factor measurement in unbalanced double null	General plasma boundary interfaces	Watkins	Sandia National Lab
364	Secondary divertor and SOL	General plasma boundary interfaces	Watkins	Sandia National Lab
365	Suppression of first ELM following the L-H transition	ELM control for ITER	Evans	GA
366	Target plate Vf evolution as an indicator of ELM suppression	Torkil Jensen Award for innovative research	Watkins	Sandia National Lab
367	Electron heat transport in 3rd harmonic-ECH-heated hybrid plasmas	Transport	Schmitz	UCLA
368	Dynamic D retention studies	Hydrogenic retention (2009)	Pigarov	UCSD
369	Investigations of ITER-like castellation: castellation shaping to reduce fuel inventory in the gaps	Hydrogenic retention (2009)	Litnovsky	Juelich
370	Mirror tests for ITER diagnostics: impact of wall conditioning by oxidation on mirror properties	Hydrogenic retention (2009)	Litnovsky	Juelich
371	Mirror tests for ITER diagnostics: active control over the deposition on mirrors by the gas feed	General ITER physics	Litnovsky	Juelich
372	Measurement of in-plasma neutral beam atom excited state lifetime	Transport model validation	McKee	U of Wisconsin
373	Excitation of the geodesic acoustic mode via radial field oscillation	Transport	McKee	U of Wisconsin
374	Exploration of better feedback toward <i>q</i> =3, 2 and usage of hybrid current-/pressure-driven RWM	RWM physics including rotation dependence	Okabayashi	Princeton U
375	Error field threshold in counter rotation	Physics of non-axisymmetric field effects in support of ITER	Garofalo	GA

ID	Title	Research Area	Name	Affiliation
376	Steady-state high β with NCS and $q_{\min}>2$	Assess steady-state current profiles for optimum performance	Garofalo	GA
377	Baffled-probe measurements of plasma properties at the divertor	General plasma boundary interfaces	Raitses	PPPL
378	He/D ₂ plasma exposure of VPS-W for EAST	General plasma boundary interfaces	Luo	ASIPP
379	Investigation of hybrid scenario access conditions with similar v^* , ρ^* , β , q and rotation	Core integration (advanced inductive)	Joffrin	JET-EFDA- CSU
380	Driven open loop stabilization of vertical instability	Torkil Jensen Award for innovative research	Humphreys	GA
381	Role of MHD in disruption mitigation	Rapid shutdown schemes for ITER	Humphreys	GA
382	Role of κ and growth rate in RE suppression	Disruption characterization	Humphreys	GA
383	Demonstrate integrated active control methods for optimal rapid shutdown	Rapid shutdown schemes for ITER	Humphreys	GA
384	Vertical stability controllability physics for ITER	ITER scenario access, startup and ramp down	Humphreys	GA
385	Improved gas jet disruption mitigation by I-coil-enhanced impurity transport	Rapid shutdown schemes for ITER	Humphreys	GA
386	Vertical stability control using C-coil and I-coil	General plasma control/operations	Humphreys	GA
387	Application of DEFC from t=0, considering the application to ITER Ohmic period	Physics of non-axisymmetric	Okabayashi	Princeton U
388	Resolve interior of separatirx lobes by very slow q_{95} sweeps	Physics of non-axisymmetric field effects in support of ITER	Schmitz	Juelich
389	A possibility of modifying the VDE process by the DEFC application	Physics of non-axisymmetric field effects in support of ITER	Okabayashi	Princeton U
390	Study of high temperature pedestals in VH-mode	ELM control for ITER	Solano	Ciemat
391	Coupling between peering mode driven RWM and ELM and possible issues of non-helicity- preferred DEFC	Physics of non-axisymmetric field effects in support of ITER	Okabayashi	Princeton U
392	Investigate physics of rotation modification of EHO-induced edge transport	ELM control for ITER	Burrell	GA
393	Study of non-axisymmetric field coupling with rotating magnetic perturbation fields	Torkil Jensen Award for innovative research	Stoschus	Juelich
394	Deposition and erosion studies with the DiMES PPI sample in detachment	Hydrogenic retention (2009)	McLean	U of Toronto
395	Tearing mode stability of high-β discharges	Core integration (steady state)	Turco	Oak Ridge Associated Universities

ID	T:41.	D 1- A	N	A CC:1: -4:
ID	Title ode stability in presence	Research Area Core integration (steady state)	Name Turco	Affiliation Oak Ridge
of pellet fu	• •	Core integration (steady state)	Tuico	Associated Universities
	no steady state target evelopment	ITER demonstration discharges	Murakami	ORNL
398 Extend ful operation	ly noninductive high-β	Core integration (steady state)	Murakami	ORNL
399 Complete	prototype off-axis NBCD	Heating and current drive	Murakami	ORNL
400 ITER acce using rf	ssibility to hybrid regime	ITER demonstration discharges	Murakami	ORNL
401 The role of free plasm	f fast ion loss in ELM- as	ELM control for ITER	Zhu	UC, Irvine
in AT plas	mas	Heating and current drive	Murakami	ORNL
403 Modulation	n of ECCD for 2/1 pression	NTM stabilization including rotation dependence	Welander	GA
field pertu	otation, non-resonant rbation, β_p , and ty on ELM size	ELM control for ITER	Osborne	GA
	ntal investigations on ven RWM feedback	RWM physics including rotation dependence	Marrelli	Consorzio RFX
406 ECRH at t	he 3rd Harmonic	Heating and current drive	Volpe	Max-Planck Institute for Plasma Physics
407 Electron B	ernstein wave studies	Heating and current drive	Volpe	Max-Planck Institute for Plasma Physics
408 ECH effec ELMs	ts on pedestal and	ELM control for ITER	Volpe	Max-Planck Institute for Plasma Physics
	CE for radial alignment M suppression	NTM stabilization including rotation dependence	Welander	GA
410 ECCD and stabilization unstable E	on of marginally peeling-	ELM control for ITER	Volpe	Max-Planck Institute for Plasma Physics
411 Filling wit ELM curre	h ECCD an unstable ent-hole	ELM control for ITER	Volpe	Max-Planck Institute for Plasma Physics
412 ELM-pacin ECH/ECC	ng by modulated D	ELM control for ITER	Volpe	Max-Planck Institute for Plasma Physics
	D modulated in the LM filament	Torkil Jensen Award for innovative research	Volpe	Max-Planck Institute for Plasma Physics
414 The full M Ohmic disc	onty: A complete ITER charge	ITER scenario access, startup and ramp down	Jackson	GA
	edestal width in ITER tion discharges	ITER demonstration discharges	Osborne	GA
	stress peak in momentum jection H-modes	Rotation physics (2009)	Muller	UCSD

ID T'41	D. 1 4	NT	A £C:1:
ID Title	Research Area	Name	Affiliation
417 ECE imaging of ELM-NTM coupling	Core integration (advanced inductive)	Petty	GA
418 Dimensionless parameter scaling of the H-mode edge transport barrier width.	f Pedestal structure	Osborne	GA
419 Effect of ECH/ECCD on H-mode pedestal characteristics and ELMs	Pedestal structure	Osborne	GA
420 Use of non-axisymmetric fields to reduce requirements for access to H-mode	Transport	Solomon	Princeton U
421 Invariance of SOL flows of plasma rotation in H-mode	Rotation physics (2009)	Muller	UCSD
422 Control of the heat and particle flux in radiative divertors	General plasma control/operations	Welander	GA
423 Study of termination event of pure co-injected QH-mode	ELM control for ITER	Osborne	GA
424 Role of flows and multi-scale fluctuations in RMP induced ELM-free operation	ELM control for ITER	Zeng	UCLA
425 Transition from drift to BAAE instabilities	Energetic particles (2010)	Gorelenkov	Princeton U, PPPL
426 Reynolds stress measurements deep inside LCFS in rotation experiment in L-mode		Muller	UCSD
427 Investigation of ZMF zonal flows i plasmas with and without RMP	n Physics of non-axisymmetric field effects in support of ITER	Krämer-Flecke	n Juelich
428 Transition from drift to BAAE instabilities	Energetic particles (2010)	Gorelenkov	PPPL, Princeton U
429 Active disruption avoidance	Disruption characterization	Strait	GA
430 Reynolds stress and flow evolution during an L-H transition	Transport	Muller	UCSD
431 Multi-experiment validation of edge-turbulence codes against basic experiments and DIII-D	Transport model validation	Muller	UCSD
432 Preferential locking — complete stabilization and avoidance of locked modes	NTM stabilization including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics
433 Locked mode AVOIDANCE by "catching" its precursor with a rotating field	Torkil Jensen Award for innovative research	Volpe	Max-Planck Institute for Plasma Physics
434 Pellet in a locked-mode	NTM stabilization including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics
435 NBCD in a locked mode	NTM stabilization including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics
436 Unlocking by NBI torque and locking/unlocking hysteresis	NTM stabilization including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics

ID Title	Research Area	Name	Affiliation
437 Modulate I-coils to induce edge currents and affect/study ELMs	ELM control for ITER	Volpe	Max-Planck Institute for Plasma Physics
438 Modulate I _p to modulate edge current above/below peeling limit	ELM control for ITER	Volpe	Max-Planck Institute for Plasma Physics
439 NTMs "on demand", by ECH	Core integration (advanced inductive)	Volpe	Max-Planck Institute for Plasma Physics
440 NTMs "on demand", by modulated ECCD	Core integration (advanced inductive)	Volpe	Max-Planck Institute for Plasma Physics
441 Test of causality: mode rotation vs. plasma rotation	NTM stabilization including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics
442 Disruption mitigation with large, shattered pellets	Rapid shutdown schemes for ITER	Jernigan	ORNL
443 Effect of impurities and wall conditioning on NTMs	Stability	Volpe	Max-Planck Institute for Plasma Physics
444 ECH target development for disruption mitigation experiments	Rapid shutdown schemes for ITER	Jernigan	ORNL
445 Onset condition on anomaly in off- axis NBCD	Heating and current drive	Myung Park	ORNL
446 Fully noninductive operation using off-axis NBCD	General SSI	Myung Park	ORNL
447 Simultaneous control of ELMs and RWMs	RWM physics including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics
448 Hot electron target plasma for runaway experiments	Disruption characterization	Jernigan	ORNL
449 Impact of RMP on L-H transition power threshold	ELM control for ITER	Moyer	UCSD
450 Poloidal asymmetry of density profile in core region due to large poloidal rotation	Heating and current drive	Myung Park	ORNL
451 The <i>q</i> <1 regime	Torkil Jensen Award for innovative research	Politzer	GA
452 Quantify transport changes during RMP in H-modes	Physics of non-axisymmetric field effects in support of ITER	Moyer	UCSD
453 Collisionality effect of RMP on ELM control and density pump-out in 2 collisionality regimes	ELM control for ITER	Mordijck	UCSD
454 Assess optimal error field correction by modulating I-coils at incommensurable frequencies	Physics of non-axisymmetric field effects in support of ITER	Volpe	Max-Planck Institute for Plasma Physics
455 Pair formation during disruptions	Torkil Jensen Award for innovative research	Volpe	Max-Planck Institute for Plasma Physics
456 Study of resonant window for ELM suppression in q_{95} at I_p =const	ELM control for ITER	Marina	Cadarache

ID Title	Research Area	Name	Affiliation
457 Hybrid confinement and m/n=3/2 MHD	Core integration (advanced inductive)	Crisanti	Euratom-ENEA Fusion Association
458 ELM suppression at counter low plasma rotation	ELM control for ITER	Marina	Cadarache
459 Pedestal scaling between DIII-D, AUG and JET (ITPA-PEP-2)	Pedestal structure	Beurskens	UKAEA
460 Characteristics of m/n=2/1 modes a high β	t Stability	Buratti	Euratom-ENEA Fusion Association
461 Summary of ORNL proposals on diagnostics for rf	Heating and current drive	Hillis	ORNL
462 ELM suppression with RMP in high performance AI plasmas	Physics of non-axisymmetric field effects in support of ITER	Politzer	GA
463 ELM suppression with RMP in high performance AI plasmas	ELM control for ITER	Politzer	GA
464 Transport of current and poloidal flux with voltage modulation	Heating and current drive	Politzer	GA
465 Comparison of rotation in ECCD plasmas to C-Mod LHCD	Rotation physics (2009)	Rice	MIT PSFC
466 MHD and confinement in fully noninductive high β _p plasmas	Core integration (steady state)	Politzer	GA
467 Fast ions, NTMs, and the current profile in AI plasmas	Energetic particles (2010)	Politzer	GA
468 Fast ions, NTMs, and the current profile in AI plasmas	Core integration (advanced inductive)	Politzer	GA
469 Density dependence of n=1 error field tolerance in NBI heated H-modes	Physics of non-axisymmetric field effects in support of ITER	Reimerdes	Columbia U
470 AI and hybrid plasmas rotating in the counter-I _p direction	Core integration (advanced inductive)	Politzer	GA
471 Optimized AI operation for ITER (low rotation, $T_e=T_i$)	ITER demonstration discharges	Politzer	GA
472 Optimized AI operation for ITER (low rotation, $T_e=T_i$)	Core integration (advanced inductive)	Politzer	GA
473 Oblique-ECE-assisted MECCD suppression of 2/1 NTM	NTM stabilization including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics
474 Compare co-/ctr-ECCD in O-/X-point (4 cases)	NTM stabilization including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics
475 Search for core plasma H-mode trigger	Transport	Schmitz	UCLA
476 ITG-scale and intermediate-scale H-mode core turbulence vs shear	Transport	Schmitz	UCLA
477 Outer PF only startup on DIII-D	Torkil Jensen Award for innovative research	Mueller	PPPL
478 High bootstrap fraction noninductive operation at high G	Core integration (steady state)	Politzer	GA
479 Burn control simulation	General plasma control/operations	Politzer	GA

TD	m: 1	D 1.1	X.7	4 00:11
ID	Title	Research Area	Name	Affiliation
480	Control requirements for self- organized, high β_p , noninductive plasma operation	General plasma control/operations	Politzer	GA
481	Pedestal modification and ELM effects via loop voltage (E_{ϕ}) variation	ELM control for ITER	Politzer	GA
482	Pedestal modification and ELM effects via loop voltage (E_{ϕ}) variation	Pedestal structure	Politzer	GA
483	ELM synchronization (pacing) via pulsed ECH	ELM control for ITER	Politzer	GA
484	Advanced inductive performance comparison in H and He plasmas	Hydrogen and helium plasmas	Politzer	GA
485	Elimination of ELMs from SNs using the RMP coils with $Bx\nabla B$ away from the divertor	Core-edge integration	Petrie	GA
486	Impurity screening comparison between ELMing and ELM- suppressed plasmas	Core-edge integration	Petrie	GA
487	Compatibility of ELM suppression with radiating divertor scenarios	Core-edge integration	Petrie	GA
488	Compatibility of ELM suppression with the radiating divertor in hybrid mode		Petrie	GA
489	Aerogel targets to study velocity, size and composition of dust particles in DIII-D SOL	General plasma boundary interfaces	Rudakov	UCSD
490	Compare AI and hybrid discharges with fishbones and with 3/2 NTMs	Core integration (advanced inductive)	Politzer	GA
491	Possible control of NTM mode in AI plasmas by shaping	Core integration (advanced inductive)	Politzer	GA
492	Access to advanced inductive and hybrid scenario plasmas in ITER	ITER demonstration discharges	Politzer	GA
493	Access to advanced inductive and hybrid scenario plasmas in ITER	ITER scenario access, startup and ramp down	Politzer	GA
494	Performance optimization of steady-state plasmas with ITER shape and low torque	ITER demonstration discharges	Challis	UKAEA
495	Lower-B ELM-control target plasma	ELM control for ITER	Schaffer	GA
496	Reproducibility of q_{95} RMP ELM suppression widow	ELM control for ITER	Evans	GA
497	The co- and counter- neutral beam switching experiment	Rotation physics (2009)	Ida	National Institute for Fusion Science
498	High central fast wave current drive efficiency at high electron β with ECH preheating	Heating and current drive	Pinsker	GA
499	Where are the &%\$#! antenna arcs occurring?	General ITER physics	Pinsker	GA
500	QH mode with NRMF driven rotation	Physics of non-axisymmetric field effects in support of ITER	Garofalo	GA

ID	Title	Research Area	Name	Affiliation
501	Characterize non-resonant magnetic torque offset rotation	Physics of non-axisymmetric field effects in support of ITER	Solomon	Princeton U
502	RMP ELM suppression dependencies	Physics of non-axisymmetric field effects in support of ITER	Schaffer	GA
503	Single-row ELM suppression vs q_{95}	Physics of non-axisymmetric field effects in support of ITER	Schaffer	GA
504	Phirsch-Schluter current in spiral footprints	Physics of non-axisymmetric field effects in support of ITER	Schaffer	GA
505	Suppression of first ELM at zero net torque	ELM control for ITER	Evans	GA
506	D injection for quantification of the recycling flux in the detached outer divertor of DIII-D	Hydrogenic retention (2009)	Brezinsek	FZJ/Germany
507	Measurement of thermo-electrically driven scrape-off-layer current (SOLC) in DIII-D discharges	General plasma boundary interfaces	Takahashi	Princeton U
508	Core turbulence evolution and transport in RMP H-modes	Physics of non-axisymmetric field effects in support of ITER	Schmitz	UCLA
509	ETG turbulence scaling in RMP H-modes	Transport model validation	Schmitz	UCLA
510	Avoidance of disruptions due to the NTM-locking with feedback application	NTM stabilization including rotation dependence	Okabayashi	Princeton U
511	Active MHD spectroscopy under feedback stabilized plasmas	RWM physics including rotation dependence	Okabayashi	Princeton U
512	Determination of the intrinsic turbulence dispersion properties in the plasma reference frame	Transport model validation	Hillesheim	UCLA
513	Flow damping in response to transient momentum input	Rotation physics (2009)	Hillesheim	UCLA
514	Measurement of neoclassical edge current by lithium beam spectroscopy	Heating and current drive	Hudson	Oak Ridge Associated Universities
515	DiMES test of in situ carbon coating for FDF, reactor PFCs	Hydrogenic retention (2009)	Stangeby	U of Toronto
516	4/3 NTM as an n=3 RMP suppressing ELMs	ELM control for ITER	Volpe	Max-Planck Institute for Plasma Physics
517	ECH/ECCD modulated in the rotating ELM filament	ELM control for ITER	Volpe	Max-Planck Institute for Plasma Physics
518	Improved entrainment, with diagnostic applications	NTM stabilization including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics
519	Easier modulated ECCD on forcefully rotated mode	NTM stabilization including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics
520	Benefits of ECCD modulation as functions of phase, deposition width, misalignment and duty-cycle	NTM stabilization including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics

ID Title	Research Area	Name	Affiliation
521 ECCD modulated by horizontal ECE	NTM stabilization including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics
522 Analogue approach to Mirnov modulation of ECCD, with phase scan	NTM stabilization including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics
523 Torque waves	Rotation physics (2009)	Volpe	Max-Planck Institute for Plasma Physics
524 Current diffusion measured by MECCD and MSE	Heating and current drive	Volpe	Max-Planck Institute for Plasma Physics
525 Magnetic transport barriers from coalescing islands	Physics of non-axisymmetric field effects in support of ITER	Volpe	Max-Planck Institute for Plasma Physics
526 NTM stabilization by RMP stochastization of X-point	NTM stabilization including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics
527 Offset velocity of NTMs	NTM stabilization including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics
528 Imaging island formation for various NTM triggers	Stability	Volpe	Max-Planck Institute for Plasma Physics
529 Locked mode AVOIDANCE by "catching" its precursor with a rotating field	Disruption characterization	Volpe	Max-Planck Institute for Plasma Physics
530 Improved front end for RMP H-mode shots	ELM control for ITER	Fenstermacher	LLNL
531 Validation of TokSys a priori simulation of DIII-D plasma contro	Integrated and model-based ol control	Humphreys	GA
532 Comparing static and dynamic particle balance	Hydrogenic retention (2009)	Whyte	Massachusetts Institute of Technology
533 Sawtooth control	Stability	Sauter	CRPP-EPFL
534 ECCD and hybrid scenario control	Core integration (advanced inductive)	Sauter	CRPP-EPFL
535 He pumping in AT-class plasmas	Core-edge integration	Petrie	GA
536 Triangularity impact on transport	Transport model validation	Staebler	GA
537 TEM dominated transport	Transport model validation	Staebler	GA
538 Low collision transport	Transport model validation	Staebler	GA
539 Dependence of momentum and particle pinch on collisionality	Rotation physics (2009)	Tala	Euratom-Tekes, VTT, Finland
540 Experimentally relevant benchmarks for gyrokinetic microstability codes	Transport model validation	Bravenec	Self-Employed
541 Carbon erosion in impurity seeded plasmas	General plasma boundary interfaces	Brezinsek	FZJ/Germany
542 Pair formation during disruptions	Disruption characterization	Volpe	Max-Planck Institute for Plasma Physics

ID Title	Research Area	Name	Affiliation
543 Compare ECCD+RMP with ECH- only control of disruptions	Disruption characterization	Volpe	Max-Planck Institute for Plasma Physics
544 Spiraling RMPs to find EFC	Physics of non-axisymmetric field effects in support of ITER	Volpe	Max-Planck Institute for Plasma Physics
545 Integrated disruption control	Disruption characterization	Volpe	Max-Planck Institute for Plasma Physics
546 Scaling of transport, turbulence and zonal flow/GAM damping with collisionality	Transport model validation	McKee	U of Wisconsin
547 Database of quasi-vacuum shots, plasma-response at low-beta and AA and SPA limits	Physics of non-axisymmetric field effects in support of ITER	Volpe	Max-Planck Institute for Plasma Physics
548 Locked mode avoidance by magnetic feedback on the saddle loops	NTM stabilization including rotation dependence	Volpe	Max-Planck Institute for Plasma Physics
549 ELM-driven RWM onset and the transport properties with/without suppressing ELM-driven RWM	Physics of non-axisymmetric field effects in support of ITER	Okabayashi	Princeton U
550 Scan to find (q_{\min}, q_{95}) that maximize f_{BS} and evaluate the steady-state potential of this profile	Assess steady-state current profiles for optimum performance	Holcomb	LLNL
551 High pedestal density/collisionality RMP ELM suppressed discharges in helium	Hydrogen and helium plasmas	Schmitz	Juelich
552 H-mode core turbulence and transport scaling with RMP ELM suppression	ELM control for ITER	Schmitz	UCLA
553 Investigate field effects on stability vs profile evolution	Physics of non-axisymmetric field effects in support of ITER	Moyer	UCSD
554 Toroidal phase convergence on the DEFC iterations	Physics of non-axisymmetric field effects in support of ITER	Okabayashi	Princeton U
555 Investigate field effects on stability vs profile evolution	ELM control for ITER	Moyer	UCSD
556 Simulating ITER startup, scenario access, and ramp down in H ₂ and He	Hydrogen and helium plasmas	Jackson	GA
557 Turbulence and transport dependence on Mach number in hybrid discharges	Transport	McKee	U of Wisconsin
558 I _p scan: Testing whether TGLF and GYRO results are consistent with multi-machine scaling laws	Transport model validation	White	UCLA
559 Test of turbulence spreading using turbulence propagation	Transport	Petty	GA
560 Toroidal/poloidal mapping of zonal flows and GAMs	Transport	Schmitz	UCLA
561 κ/κ' scaling	Transport model validation	Rhodes	UCLA