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1.  INTRODUCTION 

This report documents General Atomics’ (GA) fiscal year (FY) 2007 activity for Inertial 

Confinement Fusion (ICF), a research and development program of the U.S. Department of Energy 

(DOE) National Nuclear Security Administration (NNSA). The program goals are controlled nuclear 

fusion at laboratory scales using large laser and pulsed power facilities in the U.S., and conducting 

experiments relevant to high energy density physics (HEDP) using those same facilities. GA is 

registered in the ISO 9001:2000 program and maintained excellent communication with the users of 

the targets to continually improve the performance of the team. As well as getting extensive and 

generally very positive feedback from its customers in FY07, the GA staff authored a number of 

papers in refereed journals and presented work at major international conferences. Highlights of the 

GA ICF technology work performed under DOE Contract No. DE-AC52-06NA27279 in FY07 

comprise the subject of this report. Comments and requests for further information may be directed to 

the current GA Inertial Fusion Technology Program Manager, Abbas.Nikroo@gat.com (858) 455-

2931. 

ICF relies on inertia to confine a mixture of deuterium and tritium (DT) for the time required to 

create a self-sustained fusion reaction. This also requires that the DT be highly compressed (about 

1000 times solid density) and heated to about 100,000,000 deg. The ICF Ignition and High Yield 

Campaign supports the NNSA’s goal to develop laboratory capabilities to create and measure extreme 

conditions of temperature, pressure, and radiation density. Achieving HEDP conditions is critical to 

validate codes and to study high energy density conditions. 

The strategy to accomplish this long-term goal is centered on four objectives:  

1. Achieve ignition in the laboratory and develop it as a scientific tool. 

2. Support execution of HEDP experiments necessary to provide advanced assessment 

capabilities. 

3. Develop advanced technology capabilities that support long-term needs of NNSA. 

4. Maintain robust national program infrastructure and attract scientific talent to the programs. 

The ICF Campaign, which includes the National Ignition Campaign (NIC) and HEDP 

experiments, is presently executed at six sites: Los Alamos National Laboratory (LANL), Lawrence 

Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), the University of 

Rochester Laboratory for Laser Energetics (UR/LLE), the Naval Research Laboratory (NRL) and 

GA. General Atomics concentrates on making the targets and doing the R&D for the targets for 

experiments which are carried out at several laser and pulsed power facilities. In this, GA supports all 

four of the above strategies of NNSA’s ICF Campaign.  
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There are three major ICF facilities:  the OMEGA glass laser at UR/LLE, the Z pulsed-power 

facility at SNL, and the National Ignition Facility (NIF) at LLNL. This 192-beam laser is not quite 

100% complete but has done preparatory experiments with a few prototype beams and will perform 

Early Opportunity Shots within the next year. These facilities are supplemented by LANL’s Trident 

laser, NRL’s Nike laser and other smaller lasers.  

In FY07, GA continued its support of NNSA’s ICF program by on time delivery of more than 

4000 fully characterized target components and targets, necessary to enable experiments at the 

various facilities. The OMEGA laser accounted for the majority of experiments for ICF and HEDP. 

Each shot requires a new target and generally there is a completely different type of tightly specified 

and well-characterized target for each day or half day of shots. The Z facility paused operation during 

the summer of FY06 for a major refurbishment and came back online in the late fall of CY2007. In 

FY07, GA produced components for these facilities consisting of many different types (Section 2). 

Many of the components are novel and were made by techniques requiring significant development. 

As the targets are the initial conditions for the experiments, the targets and components need to be 

accurately measured and characterized for each shot, which destroys the target. 

In Section 2 of this report, we summarize the target deliveries for these facilities. By the nature of 

experiments, there is always the question of specifying the target well enough in advance for 

complete manufacture and characterization of the target to specification. The experimentalists may 

delay specifying the target, pending analysis of previous experiments and computer simulations, but 

several months are often required for fabrication, which often requires some development and 

characterization. In FY07, GA worked closely with LLNL — and the other sites — to manage the 

rolling specification of hundreds of targets per year required for OMEGA.  

In Section 3, we summarize research and development work for the ignition campaign on the NIF 

(NIC Target Development) and supporting current deliveries for OMEGA (NIC x-ray drive target 

production and NIC direct drive target production), and Z (SNL Target Development and 

Production). This development work has been presented to peers in the inertial fusion and HEDP 

community at major international conferences (e.g., Inertial Fusion Sciences and Applications, IFSA, 

in Kobe, Japan and the American Physical Society Division of Plasma Physics, APS/DPP, in 

Orlando, Florida, USA). Section 3 has selected presentations from these major meetings; also 

included in this technical section is closely related target work on fast ignition and inertial fusion 

energy funded via related contracts. 

Demonstration of laboratory ignition is the highest priority and a major objective of NNSA. This 

work is encompassed in the NIC which is an enhanced management activity of the NNSA, managed 

with the rigor of a project. There is a point design for the ignition target for the NIC. Major R&D is 

required to produce this target for 2010 due to the demanding specification on the ignition targets, the 

cryogenic capability required for ignition, and the higher quality standards required for experiments 

on the NIF.  
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In FY07, GA was the major program participant in the development of the non-cryogenic 

components of the new NIC targets. These include fuel capsules with graded doped ablators with 

micron-scale fill tubes. The specifications on the surface finish, roundness, uniformity, doping 

fraction, fill tube fillet, etc., are demanding. The cryogenic hohlraum that contains the capsules is 

continuing to evolve. GA is fabricating the prototypes and pieces used in current cryogenic fuel 

layering experiments. An accelerated program of R&D and preparing for facilitization to produce 

hundreds of targets per year is ongoing to ensure the success of the NIC. GA also supports the 

Cryogenic Target System (CTS) for the NIF by supplying LLNL-onsite engineering and technician 

staff. 

Development for current x-ray drive targets on OMEGA includes surrogate target components 

that are shot on OMEGA in preparation for NIC development work. For current direct drive targets 

on OMEGA, development includes novel ways of attaching fill tubes to direct drive targets, ways of 

making targets to achieve enhanced implosion performance and x-ray yield for backlighting. 

Research for SNL includes a design to create targets for Z with many fill tubes on the large Z targets 

enabling several experiments on one shot to help examine the way the fill tube itself perturbs an 

implosion. 
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2.  DELIVERIES 

GA and Schafer supplied a wide range of ICF components to LLNL, LANL, SNL, UR/LLE, and 

others in FY07. Tables 2-1 summarizes these deliveries by quarter. 
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3.  DEVELOPMENT 

3.1 Target Development and Manufacturing  

This section reports monthly accomplishments and progress for the National Ignition Campaign 

(NIC), as described in NIC Progress Reports for FY07. 

The response of a cryogenic DT ice layer to the room temperature radiation that is encountered 

during clamshell shroud opening was characterized. The spherical interferometer developed for full 

area inspection of ablator capsules is now in operation and has been used to demonstrate that full-

thickness graded germanium CH (hydrocarbon) ignition capsules meet the isolated defect specifica-

tion for exterior surfaces of this capsule type. A new cryogenic experiment was initiated to directly 

compare x-ray phase contrast characterization of a DT ice surface with optical shadowography of the 

ice in the same capsule at the same time. Test artifacts were developed in order to calibrate x-ray 

phase contrast radiography. 

First article parts for the NIC Thermo-Mechanical Package (TMP), as shown in Fig. 1, were 

produced in FY07. We then completed the first prototype assembly of a thermal mechanical package 

(TMP), as shown in Fig. 2. Also in FY07, a cryogenic experiment demonstrated significant 

improvement in the surface quality of a DT ice layer at 18.3 K by rapidly cooling the layer from 19.5 

to 18.3 K. 

Ion-assisted sputtering was demonstrated to be a considerable improvement in the beryllium 

coating process in FY07. Adequate gas retention in full-thickness NIF Be capsules using ion-assisted 

sputtering was demonstrated. Two batches of shells were coated using this process, and all of the 

Fig. 1.  First prototype assembly of a hohlraum 
inside of the thermal mechanical package. 

Fig. 2. Two components of the thermo-
mechanical package; a silicon equalizer glued 
to the TMP can and a TMP can before 
assembly. 
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shells tested from these batches were proven to be leak free. In addition, the use of Be mandrels was 

demonstrated to reduce the uptake of oxygen in Be shells. 

Ionized physical vapor deposition (IPVD) was tested on Au/U cocktails and was shown to 

improve the shelf life of the coating and the joint at the waist of the hohlraum. Installation was 

completed of a new LLNL-designed station for precise assembly of micro fill tubes onto ignition 

capsules. A versatile electron-beam and sputter deposition coating system was transferred from 

LANL to GA to improve beryllium capsule development capability. 

A milestone to develop a preliminary NIF/NIC target component binning strategy that addresses 

target parameter variability and provides the required manufacturing and assembly flexibility to meet 

campaign requirements was completed. CH capsules doped with Ge that meet NIC ignition 

specifications and measured a batch yield of 40%–75% were manufactured. We also completed a 

capsule and fill tube assembly for a multi-view radiography experiment, as shown in Fig. 3. The first 

ignition prototype NIC target assembly was fabricated and cooled to 18 K, demonstrating cryogenic 

performance and completing a milestone, as shown in Fig. 4. 

We developed a process for bonding fill tubes to Be shells that optimizes the surface treatment of 

the components and the epoxy to maximize the strength of the bond by more than 10x. Pure uranium 

NIC-scale hohlraums, with a thin electroplated gold protective liner, were tested for lifetime and 

oxygen pickup for over seven weeks and met specifications. 

 A baseline plan for NIF target assembly flow, including sub-assembly at GA and assembly and 

proofing at LLNL was completed. The first gold-boron co-sputtered hohlraums for experiments at 

OMEGA, which successfully demonstrated reduction in wall backscatter, were delivered to UR/LLE. 

A milestone for the transfer of fill tube assembly technology from LLNL to GA was completed. We 

completed a Level 2 DOE milestone to demonstrate a scientific prototype ignition capsule with fill 

Fig. 3.  A 2-mm Be capsule and fill tube 
assembly for a multi-view radiography experi-
ment showing the tapered fill tube and the tran-
sition to the fill line to the reservoir. 

Fig. 4.  Top view of the first NIC ignition 
prototype target assembly showing the Si 
cooling arms and the tented capsule. 
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tube, and produced a cocktail hohlraum with the shelf life needed for ignition experiments. A plan 

was completed for design and fabrication of all assembly point workstations that is consistent with a 

start of pilot production in 2008. We demonstrated component pre-pilot production for capsules, fill 

tube assemblies, Au hohlraums and thermo-mechanical package (TMP) components, and completed a 

second station for subassembly of hohlraums and TMP components.  

A batch of prototype Laser Entrance Hole 

(LEH) windows was received and successfully 

leak checked to establish the viability of this 

design for cryogenic NIF targets. We completed 

assembly of an ignition prototype target for testing 

with tritium in the Hohlraum Test System (HTS). 

A non-destructive radiography technique was 

developed to allow the measurement of both argon 

and copper content in Be capsules with a spatial 

resolution of 2 micrometers and a sensitivity of 

0.15 atom %.  

We produced the first hohlraum component 

with a gold-boron liner for NIF Early Opportunity 

Shot experiments, as shown in Fig. 5. 

3.2 Target Development 

In this section, attachments of technical presentations summarize the research and development 

work, and the progress, on the NIF (NIC Target Development) and supporting current deliveries for 

OMEGA (NIC x-ray drive target production and NIC direct drive target production), Z (SNL Target 

Development and Production) and the NRL laser target development.  These presentations represent 

work discussed at major international conferences including the 5th International Conference on 

Inertial Fusion Sciences and Applications in Kobe, Japan, and the 49th Annual Meeting of the APS 

Division of Plasma Physics in Orlando, Florida, USA. These attachments are selected presentations 

from these major meetings; also included in this technical section is closely related target work on 

fast ignition and inertial fusion energy funded via related contracts. 

Fig. 5.  Hohlraum components for NIF Early 
Opportunity Shot experiments. 
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The NIF target design calls for a uranium or �cocktail�

hohlraum to minimize wall losses

� Composite has higher net opacity than
constituents
� Higher opacity = more re-emission
� Provides margin for ignition on NIF

� Addition of U to Au hohlraum:
� Radiation losses reduced by 17%

x-rays

laser light

hohlraum
wall

energy
loss to

wall
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Developments for NIF are focusing on meeting

hohlraum can design specifications

75 at% U:25 at% Au

known to <5 at%

Composition

!10 "mAu backing

layer

<5 at%Bulk Oxygen
content

# 0.5 "m ± 0.01 "mAu inner

liner

!7 "m

Total

cocktail
thickness

Hohlraum Can Specifications

Must withstand handling and a

minimum of 2 week exposure to air

for final assembly
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Keeping the depleted uranium from oxidizing is the

greatest experimental challenge

� The presence of oxygen in the hohlraum
� Cancels efficiency gain

� Results in physical failure

7 !m

encased

U or CT

Leach

mold

Thick Au:

Structure

Thin Au:

Physics

Mold Coat Au Coat U or

CT

Electroplate

Au
Back-

machine
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The multi-layers are made by rotating the substrate

between separate Au and U sputter sources

Sputter

source

45°

Oxygen mitigation:
� Base pressure - high 10-8 Torr

� Monitor chamber with residual gas analyzer

Sputter sources,

a.k.a. �guns�

Rotating

part

holders

View-ports Rotating arm

Rotating mandrel

onto which material

is sputtered

1
 f

o
o

t

2 
m

m
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Sputter deposition system

� Use this system to deposit cocktails or U-only hohlraums
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Schematic of the basic sputtering process

� Sputter deposition is a type of physical vapor
deposition

� Film quality dependent on the energy of the particles
arriving at the substrate surface

Target

-ve

Substrate

Electron

Gas Ion

Gas Atom

Sputtered Particle

Discharge
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Concerns over poor yield and shelf-life prompted

change in deposition technique

� Yield was <40% intact post
leach

� Shelf-life limited to 2-3 days

� Yield of parts with required
lifetime of >2 weeks = 0%

Exposed

U

Example of failure

during leach

Au

liner
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Cocktail coatings on flat substrates fared better

with time than those on mandrels

� Microstructure is weaker along barrel

� Coatings on flat substrates pick up less oxygen over
time than freestanding hohlraums

� Coating at oblique angles is known to induce self-
shadowing

� Low density, porous films
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Transmission electron microscopy images support

concerns over self-shadowing

Cocktails on flat substrates are planar,

uniform, & have well-defined interfaces

50 nm           

DU
Au

200 nm

voids

Growth on mandrel barrel is non-uniform,

angled, and sometimes porous
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Recent alterations to coating geometry result

in dramatically improved yield and shelf-life

� Ion assist promotes better mobility of adatoms

� Improvements in density and structural integrity

has allowed:

� 93% yield through fabrication

� 70% of these parts have a shelf-life of >4 weeks in
air (higher % >2 weeks)

� Minimal oxygen uptake

Target

-ve

Substrate

Electron

Gas Ion

Gas Atom

Sputtered Particle

Discharge

ion

flux

UPDATE #s

Produced cocktails that had shelf-lives of several weeks

Yield of intact parts increased from <40% to ~70%

Focused on U only at the beginning of R&D effort
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U-only design is preferable from a fabrication

standpoint

� Small hit in radiation temperature

� Some energetics penalty in replacing Au/U
with U (U gives ~75% of the cocktail benefit)

� U performance is relatively less sensitive to
passivating layer thickness

� Easier fabrication, higher yield

� Explain
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Uranium-only hohlraum halves now exceed the

shelf-life specification

� Part cut for AES after 4 weeks in air

� 0.2 !m sputtered Au liner

� No visible signs of degradation under microscope

� Au appears in bulk because of overlap in secondary AES
peaks

2 mm
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Much progress has been made on NIF hohlraums�

� Demonstrated ability to produce NIF-scale cocktail

and uranium-only hohlraum halves

� U-only design preferable from fabrication

standpoint

� NIF �early opportunity shots� begin next year

� Au, U and cocktail shots are planned (L. Suter talk)





Progress towards fabrication and metrology of ignition
design capsules

Abbas Nikroo
IFSA 07
Sept 9-14 , Kobe Japan
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Almost all of Be shell specifications have been met

Met spec
No major tech issue
Not met

� Fill tube details are being
addressed currently

� Reproducibility, reliability and
yield of processes is major
focus currently

Capsule outer radius, 
tolerance

± 5!m

Ablator composition Be

Ablator layer 
thicknesses

see table

Ablator layer dopant 
concentration

see table

Ablator oxide layers  

Ablator � average mass 
density  

± 3% absolute,
± 1.5 % relative to campaign 
average

Ablator layer density see table

Ablator � voids < 3% void fract, 
<  0.1 !m3 void volume

Ablator � measurement 
of x-ray optical depth 
variations

accuracy <0.01%

Ablator thickness non-
uniformity

see table

Ablator inner surface 
figure

see table

Capsule surface 
isolated defects

see figure

Capsule cleanliness See isolated defects

Ablator � Low level 
impurities

sum(atomic fraction)*Z^2 < 0.1

Gas retention > 7 day half life at room temp
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Three ablator designs are being currently considered

Graded Be is
current
baseline design
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 Graded Be NIF spec

 Graded CH NIF spec

See Biener, TuO6.3
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We have produced graded Cu-doped Be
capsules at NIF-scale by sputter deposition

Mandrel Be
Coating

Mandrel
removal

Laser

Drilled

hole

Fill tube

� The ablator is coated using
sputter deposition

� Allows grading of dopant
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Be Sputter gun

Magnetron plasma

Ring generated 
secondary plasma

Bounce pan
and shells

Schematic of ion assisted deposition
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Increased gas retention

� Argon content of shells is also increased from <0.1 at% to as much as 2
at% (spec 0.25 ± 0.1 at %)

� A coater configuration  identified that leads to ~ 0.25 at% Ar in gas
retentive shell meeting specifications
� Current effort focused on understanding the parameter space to

extend to other coating systems

Spec
Ion flux

Ionized physical vapor deposition was utilized to
obtain gas retentive shells



12/18/06 NIF-1106-12980 6

USAXS measurements indicate reduced  bulk porosity
using IPVD

� USAXS shows that the pore
fraction has been significantly
reduced
� Low scattering intensity at

intermediate q implies that
voids are significantly lower

� IPVD works by creating a dense
structure by creating additional
ions that are then accelerated
toward the target

IPVD sputter deposition sharply reduces the intergranular porosity and hence permeability

IPVD

Bulk Be

No IPVD

~ 100 nm
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AFM - unpolished

Current precision radiography indicates shells
meet 10-4 optical depth uniformity spec

X-ray transmission vs angle

Graded doped Be:Cu shell

� Precision radiograph examines
azimuthal optical depth uniformity of
the shells

�  For graded Be:Cu two factors can
lead to OD variations
� Roughness at Cu doped

interface
� Void agglomeration

� Much data has been collected
� Meet current assumed

specification

� A power spectrum based
specification is being developed

� Isolated features can dominate OD
power spectrum
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Unpolished and polished Be
shells

Polished Be capsules are approaching NIF ignition
surface finish requirements

� Polishing reduces as coated shell
high mode roughness to well below
spec

� Low mode mainly dominated by
mandrel
� Mandrel selection mitigates that

issue
� Polishing does not increase low
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UCSD45-05
(~60% surface measured)
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S. Interferometer

Allow 0 defect

Allow 20 defects

Allow 100 defects

� Shells examined by phase shift

diffractive interferometer (PSDI)

� Patches taken around surface

� 60% of data analyzed

� No major features found

� RMS also below NIF curve

requirement

� Need to collect more data

� We are collecting more data

on inner surface with PSDI

nearly in production mode

Be shells have met outer surface isolated defect
feature requirement
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Inner surface of shells made using ion assist are below or
near the NIF spec

PSDI Patch scans ~ 500 μm dia

� Destructive test

� Inner surface determined by
mandrel and its removal process

� More data will be taken as unit is
available in production mode
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Fill holes have been drilled to specification

Fill hole in Be

� Hole volume/mass defect meets spec

� Fill hole focused on counterbore needs
development

Recast eliminated

Counterbore hole

Forsman FPo46
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NIF scale fill tubes have been attached to
beryllium shells

� Multiple capsule and fill tube assemblies have been built and tested for
flow, pressure, and leakage

� Leak, pressure and openness of tube testing integrated into process

� However, assemblies have failed during transport

8 mμ

9 mμ

NIF fill-tube bond

8 mμ

9 mμ

Polished Be capsule

Be capsule with bonded Þll tube
Bond joint meets NIF mass

defect spec of 2.5 ng of
adhesive

NIF spec fill-tube bond

Bond joint meets NIF mass
defect spec
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CH capsules have met all NIF specifications

� Tens of graded CH:Ge capsules have
been produced and characterized that
meet all specifications including:

� NIF outer surface power spectrum
� Wall thickness uniformity
� Doping levels and layer thicknesses

specifications

� Major issue with CH shells:
� Isolated defects

�Shells made in batches of ~
9 shells meet the isolated
defect specification
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SEM Image
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Almost all of Be shell specifications have been met

Met spec
No major tech issue
Not met

� Fill tube details are being
addressed currently

� Reproducibility, reliability and
yield of processes is major
focus currently

Capsule outer radius, 
tolerance

± 5!m

Ablator composition Be

Ablator layer 
thicknesses

see table

Ablator layer dopant 
concentration

see table

Ablator oxide layers  

Ablator � average mass 
density  

± 3% absolute,
± 1.5 % relative to campaign 
average

Ablator layer density see table

Ablator � voids < 3% void fract, 
<  0.1 !m3 void volume

Ablator � measurement 
of x-ray optical depth 
variations

accuracy <0.01%

Ablator thickness non-
uniformity

see table

Ablator inner surface 
figure

see table

Capsule surface 
isolated defects

see figure

Capsule cleanliness See isolated defects

Ablator � Low level 
impurities

sum(atomic fraction)*Z^2 < 0.1

Gas retention > 7 day half life at room temp
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End Of presentation
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Inner surface of full thickness shells made also meets NIF
specification

PSDI Patch scans ~ 500 μm dia

� Destructive test

� Inner surface determined by
mandrel and its removal process

� Again more data needs to be
taken with PSDI now available for
routine examination
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Spherical Interferometer allows mapping of the outside
and inside of shells

� Phase sensitive diffractive

interferometry (PSDI) has been

adapted to provide complete

mapping of exterior capsules

surface

�Best tool to quantify

isolated defects

� Data propagation is manual and

slow

�Automation in process

� Shell flipper under

development and construction

�Automation of data

acquisition

� Above will increase throughput
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Failure mechanism of glue joint to Be was
identified and remedied

�  Glue-Be joint identified as weak
joint

�  Glue joint strength optimized
�  Optimization of the adhesive

type (Dymax)
�  Surface preparation (ultra-

clean and activated)

�  Allows us greater safety margin for
handling 10μm scale assemblies

� Improvements observed at 20 !m
fill tube dimension
� Extending to 10 !m tubes

currently
�We have not DT filled capsule

with < 20 !m fill tube yet

Failure at 28 mN        166mN

Before Now

Interfacial Bond Strength to Be
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Optimum strength glue identified
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Our objective is to develop the “target
factory” for HAPL

target

Generator

chamber

Target

factory

lasers

final optics

• “Target factory” involves
manufacturing, filling,
injecting, and tracking the
target

• We are working towards an
ignition target

~500,000
targets/day

for 1000
MW(e) power

plant

Dry wall, direct-drive, laser fusion



IFE Ignition Targets - “Beyond the Basics”
• Potential manufacturing processes that are

adaptable to mass-production identified

• An experimental demonstration program for
each process step laid out and initiated

• A “baseline” target design identified and
good progress made on its fabrication ….

DT Vapor

Foam + DT

2.
3 

m
m

CH Overcoat

DT

Cryo at

17.3K

Diameter = ~4.6 mm
Foam Wall = ~176 μm
Yield = ~350 MJ
Gain = ~150

IFE Reference

Target

High Z coating Fusion Test Facility (FTF)
proposed next step

Naval Research Laboratory

1. Fab foam capsule

2. Overcoat foam

3. Fill/layer fusion fuel

4. Inject

5. Track and engage

Basic process steps



“Beyond the basics” on foam capsules

• Optimization of rotobeaker “curing” to
improve Non-Concentricity (NC)

• Yields of DVB foam capsules at 1 to 3%
NC improved dramatically

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10

% Non Concentricity

Pe
rc

e
n

til
e

Cure Optimization
Experiment
Updated controls -
July 2006

Controls March
2006
2005

July-Aug 2004
5%

5%

60%

50%

FTF-sized (~2.4 mm OD)
DVB foam capsules

IFE-sized (~4 mm OD)
divinybenzene (DVB)

foam capsules



Checklist of foam capsule progress

Basic feasibility demo’d, yields 5 to
60%

Yes--< 1-3%
wall th.

Non-
concentricity

Limited data, but never an issueYes--<1 % of
radius

Out of round

Qualitative by SEM - 1 to 3 μmYes <3 μm~1 μmPore size

Calculated, measured opticallyYes[25%]100
mg/cc

Density

Controlled by process flowsYes±20176 μmWall
thickness

Controlled by process flows
Characterization:  optical

Yes±0.24.6 mmDiameter

DVB is original baseline foamYes(Low O/N)DVBComposition

CommentsMeet?ToleranceValueAttribute

So does this mean we’re finished?  (no…)



Overcoats for the foam capsules are a current focus!

Not yet
shown

--For fillingStrength

Low yield of overcoats,shrinkage,
implosion, “microcracks” common

No--Holds DT
at cryo

Permeability

No--<50 nmSurface
finish

Originally 1 μm, ~10 microns may

be acceptable
No±11 μmThickness

Polyvinyl phenol was “baseline”,
others possible

YesO/N OKCH +Composition

CommentsMeet?Toleran
ce

ValueAttribute

Status - for polyvinyl phenol on DVB foam (original baseline, made by
interfacial polycondensation)

A major difficulty is overcoating (sealing) hi-aspect ratio shell at
wet stage



Alternate approaches to the original, baseline method for
overcoats have been evaluated

Cross section of coated DVB shell

PVP

DVBGDP

5 m

PVP overcoated with GDP

Evaluated
two major
approaches..

1. Two-step process - fill DVB pores with PVP then
GDP coat

2. Switch to smaller-pore foam like resorcinol
formaldehyde (RF)

RF foam, with
<0.1 μm pore

size, directly

overcoated

with GDP

Oxygen content of RF OK’d by
designers

…the simpler approach turns out to be best

Successful at Omega size (~1 mm OD)



The first gastight HAPL-sized foam capsule - GDP on RF

• Half-life with deuterium testing confirms permeation
flow - not “pinholes”

Gas Retention Yield

Current goal of <10
μm total

“pinhole flow” still likely for DVB

HAPL-sized RF shell with
direct GDP coating

Significant work
remains to

perfect this high
aspect ratio

overcoat
HAPL-sized PVP/GDP

on DVB foam



A cryogenic fluidized bed has been constructed to demo
mass-production layering

Includes filling with HD (via
permeation thru overcoats)

Cryogenic
circulator

Cryocoolers

Helium
Compressors

Deuterium
booster pump

Hi-P cell

(1400 bar)

~24
cm

• Static controlled

• Scoping tests show good
randomization

• Initial cryostat cooldowns to ~
11K

• Method to “grab” one shell for
characterization has been
done at cryogenic conditions

Unfilled shells at 11 Kelvin




Target injection now has several acceleration
options …

1. Gas-gun for >400 m/s
2. “EM Slingshot” concept for

50-100 m/s

Previously demonstrated:
-Velocity 400 m/s, time jitter 0.5 ms, 2-piece sabot separation in vacuum
-Target placement accuracy of 10 mm at 17 meters standoff (1 )

Improved accuracy demo’d at 50 m/s (without 2-piece sabot)
 4 mm at 17 m (1 ), and done with ~1 mg projectiles

Range of options, including:

Gas-gun with 2-piece
sabot to protect

target

Magnetic diversion reduces gas in
chamber, reduces heating, and

allows slower injection



Tracking - optical table demo of “hit-on-fly” engagement

• IFE  requirement is alignment of lasers and target to 20 μm
• System using lasers, optics and fast steering mirror
• Also - “glint” from target ~1 ms before the shot aligns optical

train (target itself is the reference point)

(target)

• Scaled experiment,
velocity ~ 5 m/s

• Accuracy of hitting “on-
the-fly” is 110-150 microns
now (1 )

• Working toward 20 micron
goal for demo

Fast steering
mirror for demo
(commercial)

Poster ThPo８ by
Lane Carlson



Summary/Conclusions

1. Moving “beyond the basics” in demonstrating laser fusion
target supply

- Mass-production identified for each step
- Demo programs underway with good progress
- Advanced methods being evaluated

2. Basic foam capsules can be made
- Focus now on yield curves and detailed specifications

3. Working to get gastight, smooth overcoats - first one made

4. Mass production demo for layering now undergoing cold
checkouts

5. A range of target injection methodologies available

6. Tracking and engagement table-top demo is closing in on
our goal of 20 micron alignment in a scaled experiment
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Summary

� We have developed a target platform to study high
Mach number, compressible, turbulent plasma ßows

� Scaled experiments allow us to study deep nonlinear
dynamics relevant to astrophysical phenomena in the
laboratory

� A series of experiments has been performed to study:
� The transition to turbulence and its effect on
     global hydrodynamic evolution
� Jet interaction dynamics
� Shock interactions with spherical objects



Several fundamental questions about

astrophysical jets remain unanswered

HH 270 / HH 110

1018 cm

Generation

Propagation

Interactions

We are not recreating all of the physical processes in an astrophysical

jet.  Rather, we are isolating specific subset of the physics and testing

them via a combination of experiments and simulations.



~1015 m long HH-47

Euler scaling permits us to study astrophysical

jets in the laboratory

mm-sized
Target

50 ns in the laboratory corresponds to 100 years in space

18 orders of

magnitude smaller



Radiography was used to diagnose

the jet�s temporal evolution

Point-Projection

Backlighter

Fe,Ti,V (4-8 keV)
10-20 μm pinhole

Fiducial

Foam
Jet

Al or Ti

Halfraum

Detector

Target

(Larger Target)

Fiducial

Foam

Jet

Cocoon

Pedestal

Radiograph

t = 200 ns

1 mm

5 mm



By observing the jets at different times,

we can diagnose their turbulent evolution

t = 200 nst = 100 nst = 50 ns

Time series of jets on the Omega laser

1 mm

2D simulations with the AMR code RAGE reproduce the overall jet evolution well

1 mm



2 um cell size foam

0.1 um cell size foam

By varying target components, we were able

to study different aspects of jet physics

4.7 keV Ti Backlighter

5.2 keV V Backlighter



Impact

parameter

Targets were constructed to address the

physics of a jet deflecting off a gas cloud

HH 270 / HH 110

1018 cm

Astro Object

Target Pictures



RAGE simulation
Fe backlighter at 80 ns

RAGE simulation
Fe backlighter at 200 ns

Data
Fe backlighter at 200 ns

3D RAGE simulations accurately model the

large scale hydrodynamic motions

Significant target characterization is

needed to constrain the simulations



100 ns

250 ns

150 ns

200 ns

0 100 200 300 400 500

Impact Parameter (microns)

A large number of well characterized targets

were shot to study jet deflection physics

t=0

Time



Targets were constructed to study the physics of a

shock interacting with a spherical object

500 !m dia. Al2O3

sphere, embedded in

0.3 g cm-3 RF foam

Dual-axis backlighting :

TIM3 and TIM5

Scale-1

hohlraum

CH(Br) and CH

ablator

Shock in foam

Target

5 mm

Radiograph



The experiment shows more breakup of the

ball than predicted by the simulations

RAGE

Simulations

Experimental

Data

200 ns100 ns0 ns



X-RayOptical

Characterization of assembled targets is necessary

for interpreting experimental results

Characterization impossible after the shot - Target destroyed



Cast foam surface finish

Images of hole before

and after polishing

Characterization of individual target components is

critical before the target has been assembled

With Without

Foam Perturbations

Characterization is necessary

for high-quality targets



HST project to obtain 3rd epoch to follow instabilities,

                         clumps, and shear

        3 targets: HH 1&2, HH 34, HH47    
Data to be taken August 2007 � January 2008

Our collaboration is using observation time on the

Hubble Space Telescope to study jet dynamics



Summary

� We have developed a target platform to study high
Mach number, compressible, turbulent plasma ßows

� Scaled experiments allow us to study deep nonlinear
dynamics relevant to astrophysical phenomena in the
laboratory

� A series of experiments has been performed to study:
� The transition to turbulence and its effect on
     global hydrodynamic evolution
� Jet interaction dynamics
� Shock interactions with spherical objects



Laser drilled counterbored fill holes in beryllium

capsules

A. Forsman, E. Lundgren, A. Komashko, K.
Moreno

General Atomics, San Diego, USA



Ideal fill holes have > 30:1   depth : diameter

aspect ratio.

� The holes need to be ~ 5 um
in diameter.

� Allowed mass defect is 125%
of an ideal 5 um hole.

� Hole needs to allow for

pyrolysis.

� 175 um of multilayered Be and
15 um thick GDP mandrel.

� The drilling process is more

akin to drilling a pipe than a

hole.

� Drilling process produces a
reasonable approximation to

the ideal shape.

Entrance, 175 um thick Be foil

Exit, 175 um thick Be foil



Nanosecond lasers form the hole and the counterbore

� Technique proven for fuel injectors

� Nanosecond lasers (Sierra)

� Reliable & maintenance  free

� 532 nm, 4 ns

� 25 mm laser focusing
lens

� Good standoff

� Survivability & depth
of focus.



0             60               120             180            240            300

      Fluence (J/cm2)

Formatted laser pulses enable the drilling of the fill holes

� Double pulse format outperforms
conventional technique

� Trademarked by GA as SuperPulse

� Forsman et al., J. Appl. Phys 98
033302-1 (2005)

� Conventional approach reduces
ablation debris

� Femtosecond lasers
� Gas assist jets

� Double pulse format uses ablation
debris

� Increases basic material removal
rate.

� Improves ejection of ablation
products.

1 mm type 304

stainless steel
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!t > 100 μs

!t < 1 μs

Conventional:

Double Pulse:

50
μm



The counterbore is also drilled using the laser in situ.

� In-situ drilling is fast

and accurate

� Eliminates need for
ultra-precise tool

� The tapered bottom

prevents the fill tube
from blocking the hole



A sacrificial foil is used to control surface debris

� Debris from ablation will
normally accumulate
on the surface around
the hole.

� This is undesirable.

� A thin foil is placed in
imminent contact with
the capsule at the drill
site.

� External debris
accumulates on the
foil

� The foil is removed
after drilling

          5 μm hole entrance



Present process development work is focused on
parasitic processes that limit aspect ratio and quality

� Parasitic processes arising due to small, high aspect
ratio holes:

� Unwanted laser energy deposition

� Occurs in the bore walls of the high aspect ratio hole.

� Can be thought of as transmission losses.

� Unwanted plasma thermal deposition.

� Hot ( 100 000 K) plasma flows out through a small, relatively
long hole.

� Hole enlargement due to plasma

� Radially expanding plasma can ablate the bore walls next
to the target point

� Internal debris management

� How to control redeposition



Parasitic processes, continued

� 1st-order EM waveguide model shows that 70%
transmission losses at the hole bottom should be
expected.

� Cannot experience losses less than this for a cylindrical

hole.

� Can reduce hole taper through more energetic primary

pulses.

� Hole taper would increase unwanted laser deposition.

� Adjusting the durations and timing of the laser pulses
allows us to influence the temperatures and the

durations of the ablation plasmas.

� Can also affect material redeposition.

� Becomes multi-dimensional process optimization.



The double pulse technique already mitigates these parasitic
processes

� Improved ablation rates and material ejection
efficiency mean that

� Fewer laser shots are used ! less overall energy
applied..

� Redeposition is reduced

� Each laser pulse is less intense than it would
have to be if a conventional technique was used

� Ablation plasmas are less energetic and hence
cause less damage as they exit the hole.

� Absolute transmission losses are smaller and thus
undesirable laser energy deposition is reduced.

� Further process optimization is underway



A limit on the aspect ratio for small holes ?

� 30:1 or 40:1

� 5 μm hole

� Beryllium &
Aluminum

� 4 ns laser
pulses

� Double
pulse format

� 532 nm

A
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Laser Power

Propagation
losses

Radial
expansion
due to
plasma and
material
damage
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Abstract

FI pulses are absorbed inside cone - complex geometry -hard to understand
• Reflect light?
• Create forward e current?

Expts at 1020 W/cm2 to measure reflectivity and electron creation
• Preliminary results show

— High reflectivity at glancing incidence (~40x)
— Lower electron generation at glancing incidence (~10x)

--> Minimal light absorption at glancing incidence

— No Electrons generated fluorescence forward from laser beam
(Escaped electrons carry insignificant energy)

Dominant cone effect is focusing light
Energy mostly absorbed on near-normal incidence

Design cones for concentrating light in glancing incidence reflection
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Laser

Ignitor pulse converted to electrons inside cone

• High conversion efficiency demonstrated in ILE core heating expt.
• What is the role of the cone geometry?

?

— Increase light intensity at tip?

— Increase electron flow at tip?
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1) Cone walls reflect and concentrate light at tip

Poynting  flux Electrons>1MeV

Zohar B modeling,

B. Lasinski (LLNL)

μmμm

• Particle in cell (PIC) modeling with sharp interfaces show side
wall interactions strongly reflect light at FI intensity  1019 to 1020

Wcm-2
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2) Electrons formed in sidewalls flow toward tip
and concentrate there

Surface Magnetic Field and Sheath Field are excited on Inner Surface

Electron Angular Distribution
 near the Cone Surface

Counting electrons 
 in this area

Electrons are flowing toward the tip.

PICLS modeling

Y. Sentoku (UNR)

Phys of Plasmas v.11

#6 3083-3087 (2004)

 t=264 fs

Transverse slice of Bz & Ey

Magnetic Field Bz/B0 Sheath Field Ey/E0
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Created LPI with simplified geometry to investigate effect

• Titan laser pulse f/3 1020 W/cm2, 1 psec, ~150 J

• Focused f/3 beam to 10 μm

• Incident at 28° and 75° from surface normal - s-polarized

• Target 0.5x0.5 mm2 x 25 μm thick

• Detect reflectance by light scattered off Spectralon™ surface

• Detect electrons using Bragg mirror to image K  reflectance

• Count electrons with single hit ccd - (data not yet analyzed)
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Cu K  imager

28°
Spectralon

Cu K  imager

75°
Cu K  imager

Cu K  imager

Spectralon
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Reflectance low at near normal

• Still working on calibration
• Reflection ~ Independent of prepulse

Near normal incidence

 Large Prepulse (20x larger)

Laser ~ 151 J

Specular Energy:~ 1.14J

Specular: 0.75 a.u.

20080828 s2

Near normal incidence

 Normal Prepulse (~5mJ)

Laser ~ 140 J

Specular ~ 1.73 J

Specular: 1.24 a.u.

20080824 s2
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Reflection at glancing incidence 20-40X larger

• Preliminary estimate using calibration from prev. run
So cone will concentrate light to its tip

Glancing incidence - Normal Prepulse Glancing incidence - Large Prepulse

20070830 s04

20070830 s02

20070830 s03

20070830 s01

Laser ~ 129 J

Specular ~ 32.3 J

Specular: 25.0 a.u.

Laser ~ 32.3 J

Specular ~ 13.4 J

Specular: 38 a.u.

Laser ~ 134 J

Specular ~ 38.6 J

Specular:  28.8 a.u.

Laser ~ 146.7 J

Specular ~ 36.6 J

Specular:  25.1 a.u.

Boundary
for specular
reflectance
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Fluorescence shows no evidence of
forward directed hot electrons

• Normal incidence shows
symmetric electron spread

• Glancing incidence shows no
electrons forward from beam

• Effect seems independent of
plasma gradient Near Normal Incidence

20070827 s01 ka1 & ka2

Glancing - Normal Prepulse
20070830 s02 ka1 & ka2

20070830 s04 ka1 & ka2

Streak is back along laser beam

Glancing - 20X Prepulse

20070830 s03 ka1 & ka2

20070830 s01 ka1 & ka2
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Electron generation much lower at glancing incidence
(s polarization)

Slabs 28° incidence

Slabs 75° incidence
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Any significant electron flow would be visible

• A few electrons can leave target without a trace
– Depends on target size - preplasma expansion can

increase numbers.

– Forward directed surface electrons detected with
electron spectrometer.

• Most electrons are trapped on the target
– Losing 2x1011 electrons charges 1/2 mm sphere to

MV
– If all MeV electrons, loss of 30 mJ
– Current flowing up support stalk insignificant ~106

electrons

• All trapped electrons can be seen
– Target only 25 μm thick so

we see all fluorescence
– Scattering cross section

~ independent of energy
down to threshold so we follow them
through their entire lifetime

No significant e flows along the surface
10
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T.Yabuuchi et al., Plasm &
Fus Res 1,1 (2006)

H. Habara et al., Phys.
Rev. Lett 97, 095004 (2006)
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Maximize efficiency with Winston non-imaging
light concentrator

• High reflection at glancing incidence, minimal electron generation
• Low reflection at normal incidence, maximum electron generation
• No significant electron flow along surface

Maximize light intensity at tip

• Winston Collector has the right properties
– Single bounce gets all light to the tip
– Concentrates light proportional to f/number

See also:

QI1.00003 Linn Van Woerkom - Intense laser plasma
interactions on the road to fast ignition

CO6.00012 T. Yabuuchi - Influence of sheath fields on hot
electron emission from small foils irradiated by intnse laser
pulses

GO6.00015 Andrew MacPhee - Short pulse laser coupling
efficiency to hot electrons for fast-ignition studies
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Experimental setup

28º

28º

Rear “HOPG”

Front “HOPG”

SHCCD

T
u
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O
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Cu imager

xuv imagers



Mo/Ni/V multi-layered targets were used to study laser-generated

electrons transport and the associated isochoric heating

Vanadium

Nickel

Laser energy



Two Highly Ordered Pyrolytic Graphite (HOPG) Crystal

spectrometers were used to obtain x-ray spectra: “Rear HOPG”

and “Front HOPG”

4 keV

6 keV

6 keV

10 keV



Mo K  2d order



Ni Ly   images indicate that the hot surface region has a 25 μm

diameter (much smaller than the region of cold K  emission).

Ni Ly   images
70 m fwhm



Two XUV imagers at 68 eV and 256 eV recorded spatial patterns

of thermal emission from the rear surface of the targets

2.5 μm Mo0.5 μm Mo0 μm Mo

68 eV

256 eV

The rear surface temperature was determined to be ~ 400 eV



Ni K

Ni He

Ni Ly

Ni K

Ni He

Ni He

The collisional-radiative model SCRAM was used to generate Ni

spectra

No Mo at the surface



Ni K

Ni He

Ni K
Ni He

Ni at 0.5 microns



Ni K

Ni K

Ni at 1.0 microns



Ni K

Ni K

Ni at 2.5 microns



K-shell emission spectra showing the reduction of thermal lines

intensity with Mo overlay



Temperature profile obtained using thermal line intensity ratio

Depth (microns)

~ 400 eV

The rear surface temperature is consistent with both spectroscopic modeling and xuv results



Hydrodynamic modeling of the Vulcan laser pre-pulse shows

that the pre-plasma extends 2 – 3 m between critical and

solid density

   W. Theobald et al.  Phys. Plasmas 13, 043102 (2006)

I = 2.5 x 1013Wcm-2

 = 1.5ns

Electron density profile

obtained using the 2D

Eulerian Code POLLUX



1D PIC simulations of 5 m solid density Mo+5  slab target with pre-

plasma at two different laser intensities

Results of 1D PIC simulation: ion density profile at time 1ps for two different laser intensities. Also

shown is the intial ion density profile



2D collisional Particle-in-Cell (PIC) simulations of a 5 m

thick Molybdenum  target

Results of 2D PIC simulation:

 (a) electron energy density (arbitrary units)

(b) azimuthal magnetic field in units of B0=2MG at time 100fs.

The laser pulse is modeled as

Gaussian in space and top-hat in

time

The simulation box has a total

size of 30 m x 60 m at a

resolution of 80 cells per m and

10 ions plus 50 electrons per cell



PIC simulations suggest light pressure-driven electrostatic shock

as a heating mechanism

The amount of energy in the hot surface layer is ~0.3 J

which is < 1% of the laser energy.

Results of 2D PIC simulation :

(a) longitudinal ion phase space.

(b) electric potential (solid), and

electron density (dashed) along

laser irradiation axis; average

over 0.25um.

(c) energy spectrum of all electrons

at time 100fs



Conclusion

•  Heating of a sub micron thick layer at near solid density to ~5keV

temperature by 5x1020wcm-2, 0.8 ps laser irradiation is attributed to the light

pressure-driven shock.

•  Such shock heating is expected only when the light pressure and pulse

duration are sufficient to sweep up preformed plasma.

• The heating is interesting in its own right for creation of high energy

density states of matter. It is not a major drain of electron energy and

therefore does not adversely affect fast ignition.



Fabrication and metrology of ignition design copper

doped beryllium capsules with fill tubes

Abbas Nikroo

APS/DPP 07
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Three ablator designs are being currently
considered  for ignition campaign

Graded Be:Cu
is current
baseline design

5 20

10-1

100

101

102

103

104

105

P
o

w
er

, n
m

 2

2 4 6 8
10

2 4 6 8
100

2 4 6 8
1000

mode number

 Graded Be NIF spec
 Graded CH NIF spec

D. Ho, TI1-3CH:Ge

• Capsule specs

• Fill hole and tube specs
HDC
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All Be shell specifications have been demonstrated

• Process reproducibility, reliability and yield are major focus currently as

we move into pilot production

Dimensional
and dopant

Voids 
and density

Surface

Gas retention

Capsule outer radius, 

tolerance

± 5 m

Ablator composition Be

Ablator layer 

thicknesses

see table

Ablator layer dopant 

concentration

see table

Ablator – average mass 

density  

± 3% absolute,

± 1.5 % relative to campaign 

average

Ablator layer density see table

Ablator – voids < 3% void fract, 

<  0.1 m3 void volume

Ablator – measurement 

of x-ray optical depth 

variations

accuracy <0.01%

Ablator thickness non-

uniformity

see table

Ablator inner surface 

figure

see table

Capsule surface 

isolated defects

see figure

Capsule cleanliness See isolated defects

Ablator oxide layers  

Ablator – Low level 

impurities

sum(atomic fraction)*Z^2 < 0.1

Gas retention > 7 day half life at room temp

Opacity

Haan spec table

Capsule and fill tube specs
have been met
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We produce graded Cu-doped Be
capsules at NIF-scale by sputter deposition

Mandrel Be
Coating

Mandrel
removal

Laser

Drilled

hole

Fill tube

• The ablator is coated using
sputter deposition

— Allows grading of
dopant

• Adequate rate for CH
mandrel fabrication

demonstrated

• Ion flux used for improved

structure

Ion flux
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• Weak structure and accumulated stress in coating led to nano-cracks in
shells

• Nano-cracks led to rapid leakage of gas out of the shell

Cu doped layer

Be layer

Although dimensional and dopant specs were met,
previous process led to non-gas retentive Be shells

Thickness, μm 
Made vs spec

Cu dopant at % 
Made vs spec

88.6 vs 85

12.2  vs 15±3

49.1 vs 50±3

5.1 vs
5±1.5 6.0 vs 5±1

0% vs 0%
0.45% vs 0.35 ±0.1%

0.32-0.4% vs 0.35 ±0.1%

0.6-0.7%  vs 0.70 ±0.1%

0% vs 0%

Total : 161 vs 160±3

OD: 1992_m vs 2000_m

Dimensional and dopant specs demonstrated
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Ion assisted deposition was utilized to obtain gas
retentive shells

• Argon content of shells is also increased from

<0.1 at% to as much as 2 at% (spec 0.25 ± 0.1 at
%)

• Coater configuration used that leads to ~ 0.25 at%

Ar in gas retentive shell meeting specifications
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1.E+03

Ion energy

D
2 h
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e,
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s

Increased gas retention

Spec

Previous process •Density increase also observed
~ 1.82 ± 0.2 g/cc

• X-ray scattering confirms total
void and size (<500nm) reduction

Increased density

1.70

1.72

1.74

1.76

1.78
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Unpolished and polished Be shells

Polished Be capsules meet NIF ignition surface
finish requirements

• Polishing reduces as coated shell high

mode roughness to well below spec

• Low mode mainly dominated by

mandrel
— Mandrel selection mitigates that

issue
— Isolated defects within

specifications

Polished Be vs spec
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Spec

Polished
shells

UCSD45-05
(~60% surface measured)
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Allow 20 defects
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Isolated defects
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Inner surface of shells made using ion assist are
below or near the NIF spec

PSDI Patch scans ~ 500 μm dia

• Destructive test

• Inner surface determined by

mandrel surface

• Blistering of inner surface has

been mitigated by adjustment to
removal temperature

10-3

10-2
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100

101

102

103

104

P
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m

 2

2 3 4 5 6 7
10

2 3 4 5 6 7
100

2 3 4 5 6 7
1000

mode number

 Be Inner surface spec
 Patch 1
 Patch 2
 Patch 3
 Patch 4
 Patch 5

B. Hammel, PO6-3

• Effect of isolated features being

modeled
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PR Graded Be spec

PR - unpolished

AFM - unpolished

Current precision radiography indicates shells
meet 10-4 optical depth uniformity spec

X-ray transmission vs angle

Graded doped Be:Cu shell

• Precision radiograph examines

azimuthal optical depth uniformity of
the shells

• Three factors can lead to OD
variations

— Thickness variations
— Void agglomeration

— Roughness at Cu doped interface

• A more rigorous power spectrum

specification is being developed
— Sputtered shells meet nominal

spec

1 mm

(16
rows)

(144
pixels/row)

rotation

detectorsX-ray
beam

100 m
 resolution
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Fill holes have been drilled to specification

• Used super pulse nano-sec laser technique
— Fuel injector drilling

• Hole volume/mass defect meets spec
— 5 m through hole

— 15 m counterbore

• 10 m fill tube

Be capsule with bonded fill
tube

Bond joint meets NIF mass
defect spec

NIF spec fill-tube bond

Forsman FPo46

20 m

A. Forsman , YO5-9
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All Be shell specifications have been demonstrated

• Process reproducibility, reliability and yield are major focus currently as

we transition into pilot production

Dimensional
and dopant

Voids 
and density

Surface

Gas retention

Capsule outer radius, 

tolerance

± 5 m

Ablator composition Be

Ablator layer 

thicknesses

see table

Ablator layer dopant 

concentration

see table

Ablator – average mass 

density  

± 3% absolute,

± 1.5 % relative to campaign 

average

Ablator layer density see table

Ablator – voids < 3% void fract, 

<  0.1 m3 void volume

Ablator – measurement 

of x-ray optical depth 

variations

accuracy <0.01%

Ablator thickness non-

uniformity

see table

Ablator inner surface 

figure

see table

Capsule surface 

isolated defects

see figure

Capsule cleanliness See isolated defects

Ablator oxide layers  

Ablator – Low level 

impurities

sum(atomic fraction)*Z^2 < 0.1

Gas retention > 7 day half life at room temp

Opacity

Haan spec table

Capsule and fill tube specs
have been met




