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PHYSICS OF LOCKED MODES IN ITER:
ERROR FIELD LIMITS, ROTATION FOR OBVIATION,

AND MEASUREMENT OF FIELD ERRORS

R.J. La Haye

ABSTRACT

The existing theoretical and experimental basis for predicting the levels of resonant
static error field at different components m,n  that stop plasma rotation and produce a locked
mode is reviewed.  (This report is a complement to Refs. 1 and 2.)  For ITER ohmic
discharges, the slow rotation of the very large plasma is predicted to incur a locked mode
(and subsequent disastrous large magnetic islands) at a simultaneous weighted error field
(Σ1

3wm1 Brm1
2 )1/2 BT >~ 1.9 × 10–5 .  Here the weights wm1 are empirically determined from

measurements on DIII–D to be w11 = 0.2 , w21 = 1.0 , and w31 = 0.8  and point out the
relative importance of different error field components.

This could be greatly obviated by application of counter injected neutral beams (which
adds fluid flow to the natural ohmic electron drift).  The addition of 5 MW of 1 MeV beams
at 45° injection would increase the error field limit by a factor of 5; 13 MW would produce a
factor of 10 improvement.  Co-injection beams would also be effective but not as much as
counter-injection as the co direction opposes the intrinsic rotation while the counter direction
adds to it.

A means for measuring individual PF and TF coil total axisymmetric field error to less
than 1 in 10,000 is described.  This would allow alignment of coils to mm accuracy and with
correction coils [3] make possible the very low levels of error field needed.
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1.  INTRODUCTION

Locked modes are resonant q = m/n  magnetic field perturbations that appear when
resonant static error field exert torque/drag which stops the plasma rotation, thus locking the
perturbation in the lab frame.  They arise in two ways.  The first way is by a spontaneous
rotating Mirnov mode due to an unstable plasma configuration.  This rotating magnetic
perturbation cannot penetrate the resistive vacuum vessel wall, but induces a countering
eddy current whose field acts on the rotating island current Jθmn  to exert a slowing torque.
Under certain conditions, this torque can stop the rotating mode and lock it [4], a situation
not of concern for this report.  The second way of locking is by application of a resonant
m,n  static error field to the plasma fluid rotating at the surface q = m/n .  A rotating plasma
is self-healing to resonant static error fields, i.e., no significant islands can be formed
because the rotating singular surface acts as a conducting wall and an eddy current is
induced which nearly cancels the static field, thus no island [5–8].  However, this eddy
current is not exactly canceling as the singular layer has finite resistivity, thus, there is a net
torque/drag which slows the rotation and can lead to locking.  Once the rotation is stopped,
the island cancellation is lost and an amplification of the static error field tends to occur.
Thus, static error field locked modes/islands are particularly troublesome.

Rotation of ohmic plasmas is due to the electron diamagnetic drift and decreases as
device size increases [9].  Thus, ITER is predicted to be very sensitive to error fields and
locking.  The level of tolerable error field can be significantly increased by adding rotation
using co or counter injected neutral beams.  Counter-injection is preferable since it adds to
the electron drift.  Co-injection requires extra power since it opposes the natural electron
drift and must transiently drive the rotation through zero.

Very low levels of resonant static error field are possible provided: (1) careful coil
design minimizes asymmetries from feeds, turn to turn transitions, etc. [10], (2) careful coil
alignment is done [10], and (3) residual errors are reduced by a well designed correction coil
[11].  Total n = 1 relative errors from individual coils can be measured to <1 in 104 [7,12]
which translates to mm alignment accuracy in ITER.

In Section 2, the single mode one-dimensional (1-D) model for static error field locking
and scaling with parameters is presented.  Section 3 develops work on multimode models.
The multimode error field limits for ITER are estimated in Section 4.1 for ohmic plasmas
and in Section 4.2 for neutral beam rotation driven L–mode plasmas.  Finally, a means of
measuring (and aligning) PF coil and TF coil error fields is proposed in Section 5.
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2.  SINGLE m/n MODE LOCKING

2.1.  ISLANDS

The singular surface q = m/n  is the analogy of a thin conducting wall of width δ ,
radius r , conductivity σ , rotating at angular frequency ω .  The radial Brmn  resonant [left, if
left-handed plasma of form cos(nφ − mθ )] static error field cannot penetrate such a rotating
layer if   ωτrec >> 1 where   τrec  is the reconnection time (related to the plasma resistivity).
Essentially, an eddy current is induced which if ωτrec → ∞, cancels the applied Brmn , i.e.,
opposes reconnection.

The full radial width of the resulting island is

  
wmn = 16 r mn R Brmn

ns BT







1/2
2 m

− ′∆ rmn







1/2
1

1+ (ω τrec )
2











1/ 4

. (1)

The first term is the “vacuum island width” [13], and is almost always inappropriate for a
tokamak as it neglects both the second and third terms.  The second term is the usually large
amplification (neglecting rotation) due to the plasma helical current response with ′∆  the
logarithmic jump in poloidal flux across the tearing layer.  For broad current profiles and/or
high m , ∆′ rmn/2 m ≈ −1 and for peaked current profiles and low m , ∆′ rmn / 2 m ≈ 0  [14].
The third term is the rotation opposition to reconnection and can be very small if

  ωτrec  is large [7]. In ITER, with m/n = 2/1, rmn ≈ 0.7a ≈ 2.0  m, R = 8.0 m, shear s = 1,

  Brmn/BT ≈ 2 ×10−5 , −∆′ r21/ 2m ≈ 0.25, and   ωτrec ≈ 2π ×130Hz × 0.25 sec ≈ 200 , a vac-
uum island of 7 cm would be 14 cm ( w/r = 0.07) when locked (ω = 0 ) and only 1 cm
( w/r = 0.005) when rotating. Thus,   wmn/wvac << 1 for rotating (also called slipping) with

  (ωτrec )
2 >> 1 and w/wvac > 1 for locked with   (ωτrec )

2 < 1.  Note that Hurricane and Jensen
in numerical resistive viscous modeling of islands found that no island exists with slipping,
not even a greatly reduced one [8].

The skin layer physics for   τrec  is not yet determined.  The analogy is to a conducting
shell wall time   τw = µ0σrmnδ /2 .  Fitzpatrick suggested using the tearing layer thickness for
δ  so that   τrec ≈ τR

3/5τA
2/5 or   τR

5/6τA
1/3 τv

1/6  with viscosity where the resistive time

  τR = µ0σrmn
2 , the Alfvén time   τA = R/BT (µ0nmi )

−1/2 , and the viscous time is τv = rmn
2 / ν⊥

where ν⊥  is the perpendicular viscosity [7].  Jensen et al. suggested using the self-
consistent island width wmn  for δ , thus,   τrec ≈ τR (wmn/rmn ) / 2 m  [5].  In a later work,
Jensen et al. suggested better agreement would be found with experiment using a self-
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consistently turbulence enhanced η  in the singular layer above that due to Spitzer collisions
[15].  Wang and Bhattacharjee arrived at yet a different relation by dealing with nonconstant
ψ  islands instead of the usual constant ψ  approximation used by previous authors [16].

2.2.  TORQUE/DRAG ON ROTATION

The induced eddy current at the singular layer does not completely cancel the applied
Brmn  as the finite   τrec  produces a small phase shift.  Thus there is a net 〈Jθ × Br 〉mn torque
which opposes the rotation. This is given as a delta function at q = m/n  for   (ωτrec )

2 >> 1

  
Tφmn = − R × Brmn

2

µ0







rmn

qR







2 π R 2π rmn( ) 1
ω τrec







, (2)

where the second bracket is the projection of the helical torque in the toroidal direction and
the fourth bracket shows that Tφmn → 0 as   ωτrec → ∞ , i.e., as the singular surface acts as a
perfect conductor [7,17].

The drag from the m/n  static resonant error field at the singular surface can slow the
entire plasma rotation.  Taking a momentum drive toroidal torque per unit volume dTφ /dV
and viscosity ν⊥  uniform in minor radius, the momentum balance with error field torque is

0 =
d Tφ
d V

+ ni mi ν⊥
r

R
d

d r
r

d vφ
d r







+
Tφmn

4π Rrmn
δ r − rmn( ) . (3)

The boundary conditions are vφ (a) = 0 , vφ (rmn ) continuous.  The solution for toroidal
rotation velocity vφ (r) is

  

vφ = v0 1− r2 a2( ) +
2 v0 Tφmn ln(rmn/a)

d Tφ dV( ) 2π2 Ra2 , 0 ≤ r ≤ rmn    , (4a)

  

= v0 1− r2/a2( ) +
2 v0 Tφmn ln(r/a)

d Tφ dV( ) 2π2 Ra2 , rmn ≤ r ≤ a , (4b)

with

v0 =
d Tφ / d V( )a2

4ni mi ν⊥R
. (4c)

The solutions with and without error field drag are shown in Fig. 1.  While the greatest
effect is at r = rmn, viscosity lowers rotation across the profile.  The effect of singular
surface torque can be readily generalized to multimodes and/or to nonuniform dTφ /dV , ν⊥ .



PHYSICS OF LOCKED MODES IN ITER:  ERROR FIELD LIMITS, ROTATION FOR OBVIATION,
AND MEASUREMENT OF FIELD ERRORS

GENERAL ATOMICS REPORT GA–A22468 5

NO ERROR FIELD

dragr/a

Vφ
Vo

WITH 
          ERROR 
                   FIELD

1.0

0.5

0.0
0.0 0.5 1.0

Fig. 1. Model radial profiles of plasma rotation with and without error field delta function drag at
singular surface rmn/a = 0.7  for Tφmn [2 π 2 Ra2dTφ /dV ] = 0.5.

2.3.  SINGLE m/n MODE, 1-D MODEL OF RESONANT ERROR FIELD MODE LOCKING

The momentum balance with a drive Tφ  and a characteristic angular rotation ωφ  is

  
0 ≈ Tφ − nmi 2π Rπ a2 ν⊥

a2

ωφ R

2






R − C Brmn
2

ω τrec
, (5)

with   C = (4π 2Rrmn
2 /qµ0 )2ln(a/rmn ) approximating the right geometric factor for the loca-

tion of the error field drag.  For zero error field, Brmn= 0 ,   ωφ ≡ ω0 =T φ/π 2 nmi ν⊥ R3 is the
unperturbed angular rotation. As Brmn

2  is increased, ω  decreases and this allows more
reconnection (  ω τrec  is smaller) increasing the normalized drag, etc.  A critical condition is
reached for mode locking.  The angular rotation with Brmn

2  is [7,18]

  

ωφ

ω0

= 1
2

+ 1
2

1 − 4C Brmn
2

ω0 τrec Tφ








1/2

. (6)
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For ω/ω0 ≤ 1 / 2 , there are no solutions and a discontinuous jump is made to ω/ω0 ≈ 0  and

  ωτrec < 1, i.e., locking.  The critical error field relative to   BT  for ω/ω0 = 1 / 2  can be written
as

    

Brmn

BT
= ω0 τA

4
τrec
τV







1/2
q1/2

2ln a / rmn( )[ ]1/2 . (7)

Equation (7) gives the basic scaling for locking.  Note that since τA ~ n1/2 ,   Brmn /BT  scales
as ω0n1/2  indicating a faster unperturbed rotation is less sensitive to error field locked
modes (  ω τrec  is bigger, T φmn/ Brm

2  is smaller) and a higher density is less sensitive (for
fixed ω0) as the mass the error field torque must viscously slow is greater.  The behavior
of ω/ω0  and   w/wlock  as Brmn  is increased from 0 to   Bcrit  are shown in Fig. 2.  For
ITER ohmic plasmas taking m/n = 2/1, ω0/ 2π = 130  Hz,   τA = 0.4   µ sec ,   τrec = 0.25  sec,

  τv = τE = 1.7  sec, a/rmn = 1.4 , one gets   Br21/BT ≈ 5 ×10−5  which will be more rigorously
treated in Section 4.

1.0

0.5

0.0
0.0 0.5 1.0 1.5

w/wlock

w/wlock

Brmm/Bcrit

SLIPPING LOCKED

ω/ωo

ω/ωo

Fig. 2. Model for relative plasma rotation ω/ω0  and island width w/wlock  versus m/n  resonant
static radial error field normalized to critical value for mode locking.
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The Jensen et al., 1993 skin layer physics gave a discontinuous locking at ω/ω0 = 2/5
and the nonlinear resistivity model (Jensen et al., 1996) gives a nest of curves, some
discontinuous — some not.  Experimentally, it is difficult to detect the difference as
ω/ω0 ≈ 1/2  at locking.  As an aside, note that while the original Fitzpatrick and Hender
theory of 1991 was quite successful, it made assumptions on a critical condition at   ωτrec ≈ 1
(not ωτrec >> 1) which maximized Tφmn  and involved ′∆  as a parameter [13].  Later, it was
recognized that the slipping torque along with   (ω τrec )

2 >> 1 could describe the critical
condition through Eq. (6) which does not explicitly involve ′∆  [7].
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3.  MULTIMODE m/n LOCKING

Locking can, in principle, occur by any resonant mode m/n .  However, modes such as
1/1 or 3/2 that resonate near the axis have little torque as surface area is small, rotation is
high, and the plasma is hotter for a larger   τrec  [Eq. (2)].  The modes produced by external
sources fall off as rm−1 going in radially to the surfaces, thus low m  is likely to have a
stronger Brmn

2 .  Experimentally, m/n = 2/1 is most troublesome.  A further complication
arises through multimode effects, which can be significant even for low beta, ohmic plasmas
in at least two ways.

The first way is through m ± 1,n  sideband toroidal coupling to the m,n  surface. The
effective 2,1 static error has two sources: (1) the external 2,1 component Br21, and (2) the
plasma-induced 2,1 from external coil 1,1 and 3,1 errors.  If there are q = 1 and 3 surfaces,
there will be plasma rotation eddy currents to oppose reconnection, which nearly cancel the
1,1 and 3,1 error fields. The Br2±1,1fields induced at q = 2 ± 1 will have sidebands at q = 2
of order r21/R .

Thus, the total effective 2,1 component Σ Br21 taking into account the rm−1 falloff of
Brmn  inside the source and r(m+1)

 outside is,

Br21 ≈∑ Br21 + Br11
r11

r21







2
r21

R
+ Br31

r21

r31







2
r21

R
. (8)

Of course, the phases must be taken into account properly which is not done for simplicity in
Eq. (8).  If only Br21 were critical for locking, nulling the external Br21 alone could leave a
residual effective Br21 from the external Br11  and Br31  This would shift any 2,1 correcting
coil scheme to a somewhat different optimum correction and for typical aspect ratio of
a/ R ≈ 1 / 3 is a very small effect.

The second way of multimode locking is through the effect of resonant static error drag
on multiple surfaces.  Rotation reduction by 1,1 and/or 3,1 modes can lower ωφ  viscously at
q = 2  for example, allowing a smaller Br21 to produce locking. The “0-D” momentum
balance can be rewritten as

  
0 = Tφ − n mi 2π Rπ a2 ν⊥

a2

ωφ R

2






R − ∑
m

∑
n

Cmn Brmn
2

ωφ τrec,mn

, (9a)

where
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Cmn ≈ 4π 2 Rrmn

2

qµ0

2ln a/rmn( )[ ] for r21 < rmn , (9b)

    
≈ 4π 2 Rrmn

2

qµ0

2ln a/r21( )[ ] for r21 > rmn , (9c)

with ωφ  the 2,1 surface rotation.

The new critical condition for 2,1 locking is:

  

∑
m

∑
n

(Cmn /C21)(Brmn/BT ) 2

τrec,mn / τrec,21













1/2

= ω0 τA
4

τrec
τV







1/2
q1/2

[2ln (a/r21)]1/2 , (10)

with the RHS evaluated at q = 2 / 1 and the LHS evaluated over all significant modes, 1/1,
2/1, 3/1 for example if not also 3/2, 5/2, etc.  The LHS of Eq. 10) can be rewritten as

  [ΣmΣnwmn(Brmn/BT )2 ]1/2  with wmn  mode weights.  If ν⊥  is flat, r11/a = 0.3, r21/a = 0.7 ,
r31/a = 0.9,   Te  is parabolic to 3/2,   ne  is parabolic, and   τrec ≈ τR

5/6τA
1/3/τv

1/6  as suggested
by Fitzpatrick, one gets w11 : w21 : w31= 0.6 :1.0 :1.5 .  For DIII–D ohmic discharges at
q95 ≈ 3.2 , the empirically determined weights are found to be 0.2, 1.0, 0.8 [20,21].  n = 2
resonant errors are twice as high m  for the same q  and thus should decay away faster as
Brmn ~ rm−1.  COMPASS–C with a nearly pure m/ n = 4/2  winding could produce locked
modes but the source current had to be high [22].

Finally, elongation can couple m ± 2,n to m,n  but this is a weaker effect than toroidal
coupling.
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4.  ITER MULTI-MODE RESONANT STATIC ERROR LIMITS

4.1.  OHMIC, LOW DENSITY

The ohmic target density on ITER must be low to allow H–mode at low supple-
mentary heating power.  Thus for q95   >~  3,   G = n14πa2/Ip ≈ 0.2 at 21 MA, 2.8 m, and
n ≈ 0.17 ×1014  cm–3, the natural rotation will be that of the electron drift ωDe/2π
≈ Te0/BTa2 [ 5].  For low density,   τE  is Pfeiffer/Waltz (neo-Alcator)

  τE ≈ 9.5 ×10−20 n 0.90 a0.90 R0
1.63 , (11)

or about 1.7 sec,   Te0 ≈ 4.2 ×106 (τE/n )2/5(Ip/πa)4/5 from Spitzer or about 6 keV.  Thus
ωDe/2π ≈ 130  Hz.

Matched experiments [9] for locking at q ≈ 3.5 on COMPASS–C (1.1 T, 0.56 m) [22].
DIII–D (1.3 T, 1.7 m) [23], and JET (3.1 T, 3.0 m) [24] had ωDe/2π ≈ 14 , 1.6, and 0.6 kHz,
respectively, which is consistent with scaling to 130 kHz for ITER at 5.7 T, 8.0 m.  The
measured conditions for locking at G ≈ 0.2 , q ≈ 3.5, ohmic, deuterium are given in Table I
for both the 2/1 mode only and for the weighted conditions using empirically determined
weights from DIII–D.  Extrapolation with R  gives a critical   Br21/BT = 1.0 ×10−5  for
ITER or a weighted   Br eff ,1/BT = 1.9 ×10−5.  (As   τE ~ n ,   Te0 ~ (Ip/a2 )4/5, ωDe ~ Te0/BTa2

~ R−9/5B−1/5  decreases rapidly with R  and hardly at all with B .)  A plot of critical error
field versus R  for both kinds of criticality is given in Fig. 3.  This is consistent with Eqs. (7)
and (10) for ωDe ~ R−9/5  as the dominant variable and experimentally pins down a number
of approximate factors.

In this scaling, the definition of Brmn  in each case is: (1) ohmic plasma, q95  or
qlim = 3.5, (2) m / n  components decomposed on the q = 2  surface, (3) the ‘‘straight
field line’’ coordinate used is that coordinate θ*   ~  θcyl + ελ sinθcyl  where ε = r/R ,

  
λ = βp + li/2 −1 or better yet found by magnetic field line tracing, (4) Brmn ≡ B⊥mn

perpendicular to q = 2  surface, and (5) helical Fourier analysis of resonant hand mode
of interest cos(nφ − mθ*) not cosnφ cosmθ*, etc.  Based on both theory/modeling and
COMPASS–C, DIII–D, and JET experiments, a simultaneous ohmic limit for critical error
field components is given in Table II.  (This is a best fit of the data versus R .)  This adds up
to a weighted 1.9 ×10−5  and includes the perhaps most dangerous n = 2  mode (whose r3

fall off may make it easy to avoid).
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Table I:  Scaling to ITER, Multi-mode Experiments, Simultaneous

( G ≈ 0.2 , q ≈ 3.5, ohmic, D2, w11 ≡ 0.2 , w21 ≡ 1.0 , w31 ≡ 0.8)

Device R (m)   Br11/BT   Br21/BT   Br31/BT   Σwm1(Brm1/BT )2

COMPASS–C 0.56 _____ 1.6 × 10–3 ______ 1.6 × 10–3

DIII–D 1.67 2.8 × 10–4 2.2 × 10–4 2.5 × 10–4 3.3 × 10–4

JET 3.0 8.4 × 10–5 6.4 × 10–5 4.3 × 10–5 8.8 × 10–5

↑ ↑
best fit best fit

  Br21/BT=5.4 × 10–4 R−1.90
  Breff /BT=5.4 × 10–4 R−1.69

(r2 = − 0.999) (r2 = − 0.993)

↓ ↓
ITER 8.0 1.0 × 10–5 1.9 × 10–5

4.2.  NEUTRAL BEAM ROTATION DRIVE

The critical error field scales as   Br21/BT ~ ω0n1/2 .  Increasing density is less effective
in obviating tight error limits than increasing rotation and is incompatible with a low L → H
transition power.  Increasing ω0  in an ohmic plasma requires changing the electron
diamagnetic drift as   ω0/2π ≈ Te0/Ba2.  However for   τE ~ n ,   Te0 ~ (Ip/a2 )4/5 and ω0
~ R−9/5B−1/5  cannot be modified once R  and B  are chosen.

Co-injected neutral beams in DIII–D L–mode plasmas are successful in increasing the
rotation and raising the critical error field [25].  However co-injection opposes the
electron drift and has two problems: (1)   |ω0 | ≈ |(ωDe − ω fluid )|, so is inefficient unless

  |ω fluid | >> |ωDe | and (2) ω0 ≈ 0 is transiently passed through during which the plasma is
very sensitive to locking.  (In practice if ω0 ≈ 0 is passed through rapidly in a time less than
the locking time, the plasma survives.)  Counter beams would thus be both more efficient,

  |ω0 | ≈ |ωDe + ω fluid |, and not pass ω0  through zero.

Ideally, the beam should be as tangential as possible (  cosψB ≈ 1) and of as low voltage

  VB  as possible, compatible with penetration, to provide the highest angular momentum
transfer per unit beam energy.  With   ωDe/2π ≈ 130  Hz for an ohmic plasma at G ≈ 0.2 ,
assuming the momentum and energy confinement times are equal,   τM ≈ τE, and   τE ≈ τL ,
the L–mode confinement [25]

  τL ≈ 0.5 × 0.106 * Ploss
−0.46 (MW) Ip

1.03 (MA) R1.48 (m) , (12)
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Fig. 3. Critical weighted relative error field versus major radius for COMPASS–C, DIII–D, and
JET extrapolated to ITER.  (Ohmic, q95 ≈ 3.5 , deuterium, G = nπa2/I ≈ 0.2 .)  The lines
are best fit with components given in Table I.

with   Ploss = PΩ + PB , one gets fluid rotation at q = 2

ω/2π ≈ vB PBτM cosψB

eVBn 2πR κπa2 2πR
, (13)

with vB = (κBVB/mD)1/2  and elongation κ .  Case I,   PB = 5 MW at 1 MeV at 45˚, PΩ
= 12 MW for 0.6 V at 21 MA,   Ploss = 17 MW for   τL ≈ 8  sec, and ω/2π ≈ 520 Hz or

  (ω + ωDe )  a factor of 5 larger than   ωDe .  Case II,   PB = 13 MW, PΩ = 12  MW, Ploss
= 25 MW for   τL ≈ 7 sec, and ω/2π ≈ 1700  for   (ω + ωDe )  a factor of 10 larger than   ωDe ..
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Fig. 4. Same as Fig. 3 but calculated effect of 1 MeV counter-injected beams at 45˚ included for
ITER.

Either power is below the threshold to stay in L–mode at G ≈ 0.2  (  1.7 ×1013 cm−3 ) which
requires   PB < 0.025 nBTS = 33 MW for 5.7 T and   S = 1150m2  surface area.  Thus using
Eqs. (7) or (10), the allowable error field before locking could be increased a factor of 5
(case I) or 10 (case II) in a low density L–mode target.  This is shown in Fig. 4.  The
scenario would be to apply beams in the startup phase when q  is higher and q = 2  is deeper
into the plasma (thus rm−1 weaker error field) so as to arrive at an L–mode, low density
current flattop with enough rotation to avoid locked modes.  Of course beam fueling could
increase the density above G ≈ 0.2 .  Using co-beams would (if locking at   ω + ωDe ≈ 0 is
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Table II:  Proposed Simultaneous ITER Error Field Limits

(ohmic weights w11 = 0.2 , w21 = 1.0 , w31 = 0.8 , and w42 = 0.5)

m n   Brmn/BT   (10–5)

1 1 2.2

2 1 1.0

3 1 1.1

4 2 0.7

avoided) decrease the factors from 5 and 10 to 3 and 8, respectively.  The proposed simul-
taneous limits shown in Table II could thus be raised a factor of 3 to 10 depending on co or
counter and the beam power (and angle and voltage) used.
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5.  ERROR FIELD MEASUREMENT AND COIL ALIGNMENT

5.1.  INTRODUCTION

It is not impossible to achieve single resonant mode relative error fields of Brmn/BT
~ 1 ×10−5 .  This was done in COMPASS–C by careful coil design and alignment of
coils to minimize the magnetic field error on a precise array of pickup coils [10,26].  The
COMPASS–C array is shown in Fig. 5 both as permanently installed and free standing.  The
array was iteratively moved to be concentric with the circular magnetic field line of the
pulsed toroidal field TF coil (assumed perfect, i.e., errorless).  Then each poloidal field PF
coil was pulsed individually and the error fields BR, Bφ , BZ  at the array measured, followed
by moving the PF coil iteratively until the error fields were “nulled” out.  This leaves the PF
coil fields axisymmetric with the TF coil field, as desired.  (Any PF coil known irregularities
can be calculated at the array and compensated for in the alignment.)  Sub millimeter
alignment was achieved for each coil.  Since RITER RCOMPASS ≈ 13, a 0.5 mm alignment
tolerance on COMPASS would be equivalent to 6.5 mm on ITER if the relative coil
geometry was the same.

In DIII–D, error field measurement was done about four years after assembly when
locked modes were recognized as a problem in operation.  An array (see Fig. 6) similar to
that of COMPASS–C was built on a rigid octagonal frame to sub mm accuracy and
temporarily reassembled inside the DIII–D vacuum vessel [12].  Photoresist manufactured
magnetic pickup coils were matched to produce a variation in effective pickup area of less
than 6 ×10−5 .  As in the smaller COMPASS–C device, the array was moved (in about 12
iterations) to be concentric with the assumed axisymmetric toroidal field.  ( N = 24  ripple is
not exhibited by an N = 8 array of pickup coils.)  The PF coils could not be realigned in
DIII–D but mm irregularities in placement were measurable and used for calculation of the
total Brmn  for correction by the “ n = 1” and “C” coils in DIII–D.

5.2.  PROPOSED ITER MEASUREMENT AND ALIGNMENT STEPS

(1)  Construct, as in DIII–D, a temporary rigid frame of eight triplet ( BR, BZ , Bφ ) pickup
coils by photoresist mat.  The coils should have δ NA/ NA < 6 ×10−5  matching, be
positioned on a great circle of R = 8.0 m to ∆Z , ∆R < 1 mm, and ∆ψ < 0.02˚ (0.6 mm)
orthogonality.  Opposite coils are subtracted and then integrated to get n = 1 field
components.  (n = 2  is also readily doable as in DIII–D [12].)  The array is temporarily
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Fig. 5. COMPASS–C showing permanent error field measurement assembly as installed below
outboard midplane as well as free standing in insert for clarity.
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4 TOROIDAL COILS
(Bφ)

8 VERTICAL COILS (BZ)
& 8 RADIAL COILS (BR)

22 1/2°
(4 PLACES)

45°
(8 PLACES)

TOP VIEW

1639 mm

Fig. 6. DIII–D top view of pickup coil array used to temporarily measure error fields in center of
vacuum vessel.

assembled at the nominal midplane, Z = 0, R = 8  m inside ITER but does not depend
critically on the nominal location.

(2)  Assume the TF coil is “perfect,” i.e., only n = 0  and n = 20  ripple fields with
ripple negligible at R = 8  m.  Energize the TF coil.  Measure n = 1 pickups.  The horizontal
displacements from the array concentric to the toroidal field are ∆X,∆Y ≈ 0.5(∆Bφ1/Bφ )R
from opposite pairs of Bφ  pickups.  If matching of photoresist coils is good to
6 ×10−5 , alignment can be made iteratively by moving the whole array to ∆X,∆Y  
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<~  0.25 mm less than the alignment on the frame.  The tilt of the array to the toroidal field is
R∆φ ≈ 0.5(∆BZ1/Bφ )R ≈ 0.25 mm (0.002˚) for coils matched to 6 ×10−5 , so alignment to the
plane of the toroidal field can be made iteratively to R∆φ   <~  0.25 mm.

Now if the TF coil has an irregularity such as n = 1, the array will be aligned not to the
n = 0  toroidal field but slightly off the n = 0  toroidal field.  As modes decay as rm−1 toward
the axis, the dominant error will be of form

Bφ1 ≈ − r

R
B1sin(φ − θ ) , (14a)

BR1 ≈ B1 cos(φ − θ ) , (14b)

BZ1 ≈ B1sin(φ − θ ) , (14c)

Let B1/Bφ = 1 ×10−4  or B1 = 12  G at Bφ = 6 T.  The error in horizontal ∆X,∆Y
≈ (a/R)(B1/Bφ )R = 0.03 mm if r  <~   a .  The error in tilt R∆φ ≈ 2(BZ1/Bφ )R ≈ 1.5 mm.  Thus
a mm systematic misalignment of the array is possible if the n = 1 total TF coil irregularity
is not negligible.  This can be determined as the iterative procedure is followed in later steps,
to be discussed.

(3)  Now with the array “concentric” to the assumed “perfect” toroidal field circle
energize each PF coil one at a time, measuring the n = 1 error fields.  ( n = 2  can also be
done.)  Ideally, the COMPASS–C procedure would be followed to iteratively move each
coil to null the error field.  If not, the DIII–D procedure is to compute the misalignment for
use as a basis for error correction.  Consider ITER poloidal field coil PF4 for example at
R = 15.4  m, Z = −2.1 m,   Ic = 11.2  MA-turns.  At field point Z = 0, R = 8.0 m,
BR = 799  G, BZ = 5447  G, Bφ ≡ 0  with ∆BR/∆R = 0.235 G/mm, ∆BZ /∆R = 0.310 G/mm,
∆BR/∆Z = 0.310 G/mm, and ∆BZ /∆Z = − 0.315 G/mm.  Any horizontal PF4 shift   ∆H  makes
an n = 1 error field as does any PF4 tilt   ∆T  from the plane of the toroidal field [8].  One
calculates

  BR1

(G) = − 0.235∆H − 0.550 ∆T , (15a)

  BZ1

(G) = 0.310 ∆H + 0.260 ∆T , (15b)

with   ∆H ,∆T in millimeters at the PF4 coil   Rc , Zc .  There are four unknowns, the amplitude
and the phase of   ∆H  and   ∆T , and four measurements, the amplitude and the phase of BZ1

and BR1.  Typically a   ∆H  of 1 mm would give   |BR1/BR |≈ 0.235 / 799G ≈ 3 × 10-4  and

  |BZ1/ BZ |≈ 0.310 / 5419 ≈ 6 × 10-5  which are within the <~    6 × 10-5  coil matching and the
mm alignment to the toroidal field.  Thus measuring an irregularity of order 1 mm in
positioning/alignment of PF coils is possible.  Any systematic misalignment of the array to
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the toroidal field ‘‘circle’’ can be readily checked for in the   ∆H ,∆T values of all PF–coils.
Note that Gribov et al. calculate for a 6 mm horizontal shift at 11.2 MA-turns of PF4 only,

  Br21/BT ≈ 1 ×10−5  at q = 2  and for a 0.016˚ tilt (4 mm at coil) only,   Br21/BT ≈ 1 ×10−5  at the
hypothetical q = 2  surface.  These shifts/tilts are readily measurable.  Of course the total

  Brmn/BT  is the phase quadrature addition of all sources/coils.

(4)  The PF4 only is an ideal curved vertical field without up/down symmetry for
checking the total TF coil n = 1 or n = 2  error fields.  Assuming PF4 has been realigned (à
la COMPASS–C) or not (à la DIII–D) but is assumed perfectly axisymmetric, energize PF4
only and realign the pickup array to null n = 1 as in step 2 noting displacements from
alignment in step 2 to the toroidal field.  Now the array is nominally concentric to the
circle/plane of the assumed n = 0  only poloidal field of PF4 at R = 8  m, Z = 0.

The TF coil only is energized and n = 1 (2) error fields measured.  Ideally the TF coil
would be adjusted to null these errors but as the N = 20  coil tilts, shifts, etc., possibilities
include very many degrees of freedom, it may only be possible to document this error, not to
fix it.  A check of systematic error in array alignment in (2) could also be done from this
measurement.  (In addition, the magnetically aligned frame was useful in DIII–D for
measuring vessel/limiter alignment points.)
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