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 Full Radius Electromagnetic Gyrokinetic Turbulence Code
 R.E. Waltz, J. Candy, M.N. Rosenbluth, and F.L. Hinton

General Atomics, P.O. Box 85608, San Diego, California 92186-5608

Abstract. We describe work in progress to formulate a general
geometry full radius nonlinear electromagnetic gyrokinetic code
to simulate high-n turbulence and transport in tokamaks. The
code employs continuum (fluid-like) methods in a 5-dimensional
grid space. The code has three modes of operation:  (1) flux tube
with periodic radial boundary condition (i.e, a high-n ballooning
mode representation with ∆n≈10 ) ; (2) a full radius wedge code
(∆n≈10) to study profiles shear effects; and  (3) a full torus
( ∆n=1) code to study coupling to low-n MHD.
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Introduction  and  Motivation
        •  Gyrokinetic code to contains all physics of low frequency (less than  ion cyclotron)  plasma

      turbulence assuming only that the ion gyroradius is less than magnetic field gradient length
   • Nonlinear
   • Electromagnetic and finite β
   • Real tokamak geometry

•   Continuum (fluid-like) methods in 5-dimensional space  (r, θ, n, ε, λ)
         • Possible advantage over partticle codes:  implicit advance of electron parallel motion
•  3-modes of operation:

    • flux-tube  or high-n ballooning mode representation BMR   ∆n=10      ρ* ->
         to be  bench-marked with Dorland-Kotchenruther new gyrokinetic flux tude code
    • wedge or full radius  ∆n=10      ρ* small but finite
    • full torus ∆n=1        Global MHD modes

•   Why full radius?  Shear in the ExB velocity known to have a powerful stabilizing effect.
                But shear in the diamagnetic velocity can be  just as large  and cannot be treated at  ρ* =  0 .

 Also to quantify  avalanches  and action at  a  distance   effects
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Coordinate System

 •        (r, θ, α)     r = midplane minor radius flux surface label
                         θ = poloidal angle labeling Miller's local MHD equilibrium[1]
                                           which generalizes infinite aspect ratio circular s-α model with
                                           finite aspect ratio, Shafranov shift, ellipticity, and triangularity
                        α ζ θ θ= − ∫

0
q̂d    field aligned angle  in place of toroidal angle ζ

                                                ˆ ˆ / ˆq b b= ⋅ ∇ ⋅ ∇ζ θ,  b̂ ⋅ ∇ =α 0, b̂ r⋅ ∇ = 0 , q qd= ∫0
2 2π θ πˆ /

   •    Fourier decomposition of perturbations:   φ φ θ α= −Σn n r in( , )exp( )    requires
φ π φ π πn nr r in q( , ) ( , )exp( )= − − 2   where phase factor  exp( )−in q2π  is 1 at singular surfaces

   •    parallel derivative  ∇ = ⋅ ∇ ⇒|| ( ˆ ) ( / )b Rqθ ∂ ∂θ θ1

   •   perpendicular derivatives on fast  part : exp( )−inα

 ∇ = − ∇ ⋅ × =⊥ y
f

qin b x ikα η θθˆ ˆ ( ),   where k nq rθ ≡ /   with η θ θq rB RB q( ) ( / ) /= ⇒ 1

 ∇ = − ∇ ⋅ =⊥ x
f

q kin x ikα η θ η θθˆ ( ) ( )                                             η θ θ α θk s( ) ˆ sin( )⇒ −
   •   additional slow  derivatives on φn(r,θ) :      ∇ = ⋅ ∇⊥ y

S
t pB B b( / )( ˆ )θ ∂θ

radial derivative is a mixture of fast  and slow:  ∇ = ∇⊥ x
fs

rr| | ∂              ∇ ⇒r 1

Ballooning Mode Representation(BMR)  retains only the fast derivatives
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Normalizing Units
   •     Te(0) and ne(0) for temperature and density

        a = r of last closed flux surface for length
       c T Ms e i0

1 20= [ ( ) / ] /  for velocity
        a/cs0     for time
        | | / ( ) ˆe Teφ φ0 =  and  ( / ) | | / ˆc c e A T As e0 0 =     for potentials

    •    g g r n Fe M= ˆ( , , ˆ, , ) ( )θ ε λ σ 0   for non-adiabatic distribution function

     ˆ / , / , sgn( )||ε ε λ µ ε σ= = =T v    and since ( , )ε µ  are the constants of motion

    ∂r e M rg n F D gˆ ( ) ˆ= 0     where     D g g L g L gr r r T Tˆ ˆ ( ˆ / ) ˆ [( ˆ / ) / ] ˆˆ= + + − −∂ ∂ λ∂ ε ∂ ελ ε 3 2

     Note all terms beyond ∂r ĝ    are small O(ρ*)   dropped in BMR limit.

   • Parameters:  the central ρ* [ρs s ic eB M c0 0 0= /( / )], Debye length λD0 , and electron beta βe0 .

   •  The gyro average  〈 〉 = − 〈 〉φ α φΣn ninexp( )   expand the arguments of 〈 〉φ n to first order ρ⊥ / ,r
so that 〈 〉 = ∫ − ⋅ ∇ + ⋅ ∇ + ⋅ ∇⊥ ⊥ ⊥φ α π ρ α φ ρ θ ρ θn g nd in r r/ exp( ) ( , )2 .

       As a first approximation the  slow ρ θ⊥ ⋅ ∇  can be neglected.



R. E. Waltz  APS  November  1999 QTYUIOP

Gyrokinetic Equations

•   Poisson's Equation:    − ∇ = ∫∫∑ − + 〈 〉[ ]λ φ φD
s

z zn T g0
2 2 ˆ ( ˆ ˆ) ˆ ,/

•   Ampere's Law:             − ∇ = ( ) ∫∫∑ 〈 〉ρ β νs e
s

A z g0
2 2

0 2ˆ / ˆ ˆ ,|| ||

   where the phase space integral  ⇒∫∫ ∫ − ∫ −− ∞Σσπ εε ε π λ λ3 2
0

1 2
0
12 1/ / /ˆ ˆ exp( ˆ)( / ) /( )d d B BB .

•   Nonlinear Gyrokinetic Equation [2,3 ] : ∂ ν θ ∂ ∂θˆ || ˆˆ ˆ ( ˆ ˆ ) ˆ ˆ / ˆ ˆ
t tg b g zn T U+ ⋅ ∇ = 〈 〉

− − + 〈 〉 + − 〈 〉{ } − 〈 〉{ }〈 〉 〈 〉 + +i zn T U g i g in U U g g U gE D Cω ϖ ϖ( ( ˆ / ˆ) ˆ ) ˆ ˆ ˆ ˆ , ˆ ˆ, ˆ ˆ ,*

       where “hat” quantities are normalized,  and U v A= −ˆ
|̂|

ˆ
||φ   is the  effective potential.

• The low-n MHD rule of neglecting  A⊥  while forcing the curvature drift to equal the grad-B drift
     is very good even for high-n.
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•   The curvature drift operator which acts only on ĝ  is

 ˆ ˆ( / ) ( / ){ ( , ˆ, )ϖ ρ θ ε λD sizT R B B C= − 2 0 0 0  [ / ˆ]inq r  +S( , , )θ ε λ  [ ( / ˆ) (| | / ) ]}ˆi nq r r Dk q rη η+ ∇  .

  where C is the cosine-like normal curvature, S the sine-like geodesic curvature [1]

•  The diamagnetic term is  ϖ ρ ε* ( / ) [ / ˆ][ / ˆ / ˆ ( ˆ / )]= − + −i B B inq r L Lunit s n T0 0 1 1 3 2 .

• The E×B equilibrium rotation frequency  is ˆ ( / ) ˆ [ / ˆ]ˆω ∂ ρE unit r si B B inq r= − 0 0 0Φ  .

• The nonlinear term X Y B B in q r X i n q r Y
n n n n

unit s n r k q r n, ( / ) / ˆ ( / ˆ) ,
,

/ | |{ } ≡ ∑ ′′[ ] + ′[ ]
′ ′′ = − ′

′′ ∇ ′0 0ρ ∂ η η

•  We define  [ / ˆ] / ˆ ( / )inq r inq r B Bt≡ + ( ˆ / ˆ)Rq r ( ˆ ˆ )b ⋅ ∇ θ ∂θ.             B B d rdrunit = 0ρ ρ/

     The nq/r terms are fast  and the ∂θ terms are slow.   where again we use Dr  when ∂r acts on g.

•  C  is the pitch angle scattering operator.
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Numerical Methods
•   Electron parallel motion term Lg b g= ⋅ ∇ν θ ∂θ||( ˆ )   is much faster than drift frequencies
    we are trying to follow, hence need an implicit method which solves for the fields U
     simultaneously with the advance of g

•  Gyrokinetic equation can be differenced in a time-centered fashion     M zn T≡ ˆ / ˆ

[ / ] ( ) ( / ) ) ( ) ( )(1 ∆ ∆ ∆ ∆t L g t t M t t H t S tU t g+ + = =〈 〉 +δ   where information at  time t  is given by

H t t L g t M t U t E t( ) [ / ( ) ] ( ) ( / ) ( ) ( )= − − − +1 1∆ ∆δ ,  and  E  explicit terms: 2nd  line of equation.

•  The Green's function G t L= + −( / )1 1∆ δ  is discretized by 2-point θ-derivatives centered at j + 1/2

   G is diagonal in the radial grid, and must account for bouncing , and the phase factor  on passing .

  g t t G M t tj jj U t j( ) [( / ) )]( /+ = ′ 〈 〉 + ′ +∆ ∆ ∆Σ j 1 2  +{{ ( )}}g t j   where {{ ( )}} ( )'
'

' /g t G H tj jj
j

j= ∑ +1 2
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• Source for  the Poisson equation : S tjφ ( ) = Σs ∫∫ 〈 〉z g ts s
j{{ ( )}}

 – λ φs j t t0
2 2∇ +( )∆  – Σsz M ts s

j t{ ( )− +φ ∆  + ∫∫ 〈 ′ ′Σ j G M tjj
s s[( / )∆  〈 + 〉 〉 =′+U t t S tj j( ) ] } ( )/∆ 1 2 φ

  and  a  similar  equation for Ampere's law combine to an  implicit field equation solver

                 Μ ∆
r r
V t t S t( ) ( )+ =          for   

r
V A= { , }||φ .

•  Since the gyroaveraging essentially spans all radii m,   M   jj', mm'  is a full matrix  inverted to get
field response matrix R.    R jj' , mm',  ff'  and  G m, n, s, e, l , jj'  [ or it' s tridiagonal equivalent  for
( / )1 ∆t L+δ ]  are  computed once and stored.

• The  "Explicit E " terms can be handled in different ways. The terms local in θ or with ∂/∂θ can
be added to the implicit parallel operator. The other parts can be done with "split steps".

We expect the split step for nonlinear terms to be done explicitely but the split step for the Dr̂
radial derivative terms in the geodesic curvature apparently must be done implicitly (see below)
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Reduction to Ballooning Mode Space and First Results

•   An important first step is to recover the BMR using the periodic boundary condition
φ θ φ θn s n sr r r r( , / ) ( , / )+ = −∆ ∆2 2        nmax -> ∞ and ρs0 -> 0      ρs0(nmaxq/r) ≈ 1

 slow  terms  become negligible compared to the fast  terms.

• BMR is a Fourier transform: φ θ φ θn s xr x ik x( , ) ( )exp( )+ = Σk n,kx x
          -∞ < θ <∞.

     Fourier label: k sk px = +ˆ ( )θ θ π0 2    where k nq r rs sθ = ( ) /        so     
k px

∑ ⇒ ∑ ∑
θ0

     p is the “image index” which runs over all integers

   θ π π0 ∈ −[ , ) is the discretized  “ballooning angle label”

   Periodicity  requires  BMR space functions :  φ θ π φ θ πθ θn, n,0 0, ,( ) ( )exp[ ( ) ]p sp inq r px− =2 20 .

   Equivalent to the phase factor  in real space (r,θ) :   φ π φ π πn m n m mr r nq r( , ) ( , )exp[ ( )]= − −2

       which transforms to the  continuity   condition :                  φ π φ πθ θn p n p, , , ,( ) ( )
0 01+ − =
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• To get finite grids  ballooning modes must be localized in θ , for example  –3π to 3π.

 Hence only first images p = ±1 need be retained.

 If we place the highest J* −1 image retained at half the Nyquist wave number
(4 radial grids per wavelength), then

 δ ρ ρθr J s ks
ref

s/ /[ ˆ( )]*0 01 2=  = ( / ) /( )*∆s s Jρ 0 2  where ∆s  is the singular surfaces spacing.

Note that N l Jr = 2 * * where l l* *( / ) , , . ...( )θ π0 2 0 1 2 1= − .

We take kref
sθ ρ 0 0 5= .  is highest fully resolved  with k sθ ρmax .0 1 0=

For nonlinear runs we expect l* 40=  and J* = 2 to suffice or a box of 160/(2s)ˆ  gyrolengths ρs0

These gyrolengths can be concentrated over a distance with no significant profile variation or
eventually over the full radius.
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Must use a spectral technique to evaluate radial derivatives and gyroaverages.

 "harmonic derivative" is defined such that  for any of the  Nr allowed kx's of the simulation box,

         [ ] exp( ) ( )exp( )∂r H x x xik x ik ik x=

This results in radial derivative and gyroaverageing operators which connect all Nr gridpoints.

         ∂ φ θ φ θr H m
m N

m N

m m m
r

r
H[ ] = ∑

=−

= −
( ) ( )

' /

' /

, '
2

2 1
      and  φ θ φ θ( ) ( )

' /

' /

, 'm
m N

m N

m m m
r

r
W= ∑

=−

= −

2

2 1

The electrons  can pose a problem in r-space since the Landau damping layer is impractical to
resolve without a 100-fold increase in J*

 ∆e s e i s sRq s m M r J s k/ ( / ˆ)( / )( / ) / /[ ˆ( )]*
/

*
maxρ ω ω δ ρ ρθ0

1 2
0 02 1 2= << =

If any grid is within  a distance ∆e of a singular surface, it will over-weight the k|| = 0 passing
electron dynamics. The BMR avoids this by forcing 0 boundary conditions at the extended
angle θ=±3π which properly [5]  nullifies k|| = 0 contribution, since its true weight is only
∆e r/δ  [5] .

Varying the position of the singular surface so it falls on a grid point or midway between  grid
points,  can result  in as much as a 10% variation in the growth rate.
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Must use an implicit method for the radial (harmonic) derivative component of  geodesic curvature

 split R-step :     
m

mm Dr mm m
m

mm Dr mm mi dt H g i dt H g
'

' ' '
'

' ' '( ( / ) ) ( ( / ) )∑ − = ∑ +1 2 1 2ϖ ϖ

              or          g G gm mm
R

m Nr

m Nr
m= ∑

=−

= −
'

' /

' /

'
2

2 1
     ;        g gm m⇒

The gyroaverage Wmm'  and split R-step GRmm'  matices are diagonally dominant (cyclic) cornered

and it is much better to use pointers m m m m m m' ' ( , ' )= = −∆   to write in "banded form", e.g

  g G gm m m
R

m Nb

m Nb
u

mm= ∑
=−

=

∆
∆

∆

'              N Nb r≤ / 2  [   N N Nb
u

b r= −min( , / )2 1   ]
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Linear illustration with l* = 1 and J* = 2,  adiabatic electron, electrostatic, ŝ −α  circular case :
      ŝ  = 0.25, α = 0, q = 2, 1/LT = 6, 1/Ln = 1, Ti/Te = 1, r = 1/2, and R = 1/3.
Using Nr=4 and Nθ =32  on θ π π∈ −[ , ) we  obtained the preliminary result (ω,γ) = (–0.257,0.312)
compared to Kotschenreuther's [4] code (–0.249,0.303)  on a θ π π∈ −[ , ]3 3  ballooning angle space.

Thus we are using 2-dimensions to solve a normally 1-dimensional problem for the BMR.
The added dimension will later allow us to treat the profile effects.

2–2
θ/π

φ m
(θ

+2
πm

)e
i[n

q]
θ

–4

–1.0

–0.5

0.5

1.0

0.0

0

                
2–2

θ/π

φ ∗
(θ

)

–4

–1.0

–0.5

0.5

1.0

0.0

0

φ θm ( )  from   (r,θ) -space of code   m=-2,-1,0,1         φ θp( )   Fourier reconstruction in ballooning space  p=-2,-1,0,1

                                                                                φ θ φ θ πp m
m

m
i mp( ) ( ( ) / ) exp( )=

=−

=
∑ −

2

1
4
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Computer time and storage  with radial grid number Nr scaling

•   Our original aim was to built a radial code which would reproduce exactly  the BMR
flux tube then be expanded to full radius. Using the exact Harmonic derivative operations
Hmm' and Wmm', we found much of the memory required scaled as Nr2,  most of the
linear steps as Nr2, the  nonlinear step as Nr3, and the  Matrix  M  setup time as Nr3.
These are prohibative.

We have recently learned how to diagonally "band" these diagonally dominate operations
for the linear parts and use a modified conservative nonlinearly operation with a 3-pt
derivative.

Most all of an approximate  code (with the exception of the field solve) should scale
linearly Nr.    BMR code of the same resolution, Nk= Nr,  has  linear part scaling as Nk and
nonlinear part as Nk2.   The approximations from banding and be realaxed to test
convergence.

•   Banding:    (Nb/Nr) = (11/160)  !!!!
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tg  =   (Nstep/100) (16./Nproc) (Nr/40)2  (Nθ/8)  Nn (Ne /5) (Npass+Nθ)/(5+8) Ns
tU  =  (Nstep/100) (16./Nproc) (Nr/40)2  (Nθ/8)2  (Nf)2 Nn

Some  bench points from 16ps LUNA  assuming 0 communications  in sec.

tlinear = [ (3.3+2.7 / Ns + 2 +3.5 +5.4/Nn) (Nb/Nr) +3.6 / (Nr/40) ] x  tg +[2 .9 +  0.4/(Nθ/8)/Nf/Nn) ] x tU
tsetup =  160 (Nr/40)  (Nb/Nr)3 /  Ns x tg

Nr=160  Nθ = 16  Nn=11   Ne=5  Npass=10     Ns=2     Nf=1     Nproc  =  256     Nstep=10000

with         banding   tlinear =  3hrs   (1sec/step )       tsetup  very little
without                                = 40hrs                     and  tsetup =  20 hrs.

Almost all storage from gyroaverage  Wmm' ,   split-R step  GRmm'    and  Rjjmm'

       2.(1+Ns) Nn Ne  (Npass+Nθ)   (2Nθ) Nr2 x (Nb/Nr)  / Nproc /106  =  25.5MW /ps  with
                                                                                                                         1.7 MW /ps with banding
                                             2 Nn Nf(2Nθ)2 Nr2 x (Nb/Nr)  / Nproc /106  =  2MW              (16-32 MW/ps)



R. E. Waltz  APS  November  1999 QTYUIOP

•   Conservative nonlinearly operation with a 3-pt derivative

     Schematically: in p-space  (BMR kx-space), the nonlinear term looks like

  ∂ φ φt np
p J

p J

n n

n n

n p n pg in ip g g˜ {( ' )( '' ) ˜ ˜ } { ˜ ˜}
'

'

' max

' max
' ' '' ''= ∑ ∑ − ⇔

=−

= −

=−

=1
     n n n p p p J Nr'' '; '' '; /= − = − = 2

    This nonlinearly preserves 1 2
1

2/ | ˜ |
max

max

p J

p J

n n

n n

npg
=−

= −

=−

=
∑ ∑   Back in m-space (real r-space

φ φ πnm
p J

p J

np i mp J= ∑
=−

= −1
˜ exp( / ) and by Parseval's Theorem, we  want to preserve the norm

1 2
1 2/ | |

max

max

m J

m J

n n

n n

nmg
=−

= −

=−

=
∑ ∑ . The exact m-space equivalent  is a Harmonic derivative Hmm'm"

∂ φ φt nm
m J

m J

m J

m J

n n

n n

mm m n m n mg in H g g= ∑ ∑ ∑ − ⇔
=−

= −

=−

= −

=−

=

'

'

''

''

' max

' max
' " ' ' '' ''{( ' ) } { }

1 1
  scaling  as Nr3Nn2

However it is possible to write a conservative  3-pt (cyclic)  derivative   nonlinear term

∂ φ φ φt nm
n n

n n

n m n m n m nmg in g dr f g= ∑ − − ⇔
=−

=
+ +

' max

' max
' '' ''{( ' ) ( ) / } { }1 1 2

                                                                                                 f g g gnm nm nm nm= ++ −( ) /1 1 2
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 Progress & Conclusions
•   We have how obtained good linear EM  agreement with Kotschenreuther's GKS code

•   We have found efficient MPI parallelization methods independent of grid size.

•   Have EM real geometry linear runs on the 16ps GA Linux Beowulf LUNA and
64ps/128ps low resolution nonlinear runs ES adiabatic-e ITG  runs on SDSC -T3E

•   The use of banding and conservative 3-pt nonlinear derivative appears to allow almost
linear Nr scaling.

•   Immediate goals:

__Obtain high resolution saturated nonlinear flux tube run benchmark check with new
Dorland-Kotschenreuther code.    Show convergence with decreased banding.

__Move to "flux wedge" full radius operation with non-cyclic radial boundary conditions.
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