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Stabilization of Resistive Wall Modes by Plasma
Rotation1 E.J. STRAIT, R.J. LA HAYE, J.T. SCOVILLE,
A.D. TURNBULL, General Atomics, A.M. GAROFALO, G.A.
NAVRATIL, Columbia University, E.D. FREDRICKSON, L.C. JOHN-
SON, M. OKABAYASHI, Princeton Plasma Physics Laboratory, M.
GRYAZNEVICH, UKAEA Fusion, E.A. LAZARUS, Oak Ridge Na-
tional Laboratory — Slowly rotating resistive wall modes (RWMs) are
often observed in DIII–D plasmas which exceed the ideal MHD beta limit
calculated without a wall. Theory predicts that sufficiently large plasma
rotation in the presence of a resistive wall should stabilize the RWM.
Improved stability is found with the broader roation profile obtained by
reducing the beam voltage at constant power. Recent counter-injection
experiments should help determine which velocity is relevant for stabi-
lization, by separating the diamagnetic and E × B contributions to the
fluid rotation. Slowing of plasma rotation is often observed above the
no-wall stability limit, and could be consistent with magnetic braking by
field errors or small-amplitude RWMs. If the slowing cannot be avoided,
active feedback stabilization will be required.

1Supported by U.S. DOE Contracts DE-AC03-99ER54463, DE-
AC02-76CH03073, and DE-AC05-96OR22464, and Grant DE-FG02-
89ER53297.

Prefer Oral Session
X Prefer Poster Session

E.J. Strait
strait@fusion.gat.com

General Atomics

Special instructions: DIII-D Poster Session 1, immediately following CL Hsieh

Date printed: July 16, 1999 Electronic form version 1.4



NATIONAL FUSION FACILITY
S A N  D I E G O

DIII–D
333-99/Strait (APS)

CAN THE RESISTIVE WALL MODE BE STABILIZED BY
PLASMA ROTATION?

● Beta greater than the ideal MHD no-wall limit has been sustaIned for
durations >> τw (resistive wall time)

● However, a gradual slowing of rotation prevents β > βno-wall for long pulses

— Typical deceleration rate 
1 d

dtΩ
Ω

 ~ (100 ms)–1

● Is rotational slowing an unavoidable consequence of operation above the
no-wall limit?
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PLASMA STABILIZED BY ROTATION AND RESISTIVE
WALL ABOVE NO-WALL βN-LIMIT FOR ~200 ms

● Slowly rotating n = 1 mode starts to grow after toroidal rotation of q = 3 surface has
decreased below 1–2 kHz

● Wall-stabilized duration is much longer than wall time (τ     6 ms) 
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● Plasma rotation slows continuously when β exceeds the no-wall limit
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PLASMA ROTATION SLOWS AS βN EXCEEDS NO WALL LIMIT

Columbia
University

● What causes the slowdown?
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ONSET OF SMALL AMPLITUDE RWM CORRELATES 
WITH ROTATION SLOWDOWN IN AT MODES

● High qmin (~2), low li, 
DND discharges with 
q95~4.5  

● Rotation collapse and 
confinement degradation
begin at mode onset

Columbia
University

● Ideal MHD code GATO indicates
that the n=1 kink mode is 
marginally unstable without 
a wall at 3.2 s (βN = 4li)

● Mode grows very slowly (« 1/τw)
and rotates slowly, amid fast 
plasma rotation (≥ 4 kHz)δBr (n=1)
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RWMs LIMIT PERFORMANCE OF AT PLASMAS 

● Ip = 1.2 MA, BT = 1.6 T
qmin ~ 1.7,  q95 ~ 5.5  

● βN limited to about 4 li (no 
wall limit) by bursting RWMs 

Columbia
University

● 75 % current non-inductive
>50% bootstrap

● Higher NBI power improves 
stability and duration
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RWM BURSTS SELF-STABILIZE THROUGH SMALL BETA COLLAPSES

Columbia
University
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● Plasma rotation slows during βN "peaks", recovers in βN"valleys" 
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PLASMA ROTATION INSUFFICIENT FOR COMPLETE RWM SUPPRESSION

● In conditions of improved detection, small amplitude, slowly growing 
(often γ << 1/τw) RWMs can usually be observed when βN > no wall limit

Columbia
University

Working hypothesis
☞ The plasma rotation does not completely suppress the RWM, but slows 

the growth rate.
 The electromagnetic torque from the RWM reduces the plasma rotation.

—  The confinement degradation due to small amplitude RWMs (e.g. through 
   tearing or reduced E×B shear) can decrease βN < no wall limit, leading to 
   beta saturation or rollover

—  If the plasma rotation decreases below a critical value while βN > no wall 
   limit, the mode growth transitions to a 1/τw rate, usually leading to a 
   minor disruption

333–99
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WHY DOES PLASMA ROTATION DECREASE?

● Slowing of plasma rotation is observed when β exceeds 
  
β

crit
no−wall

● Possible causes for the slowing include electromagnetic drag from

— A small-amplitude RWM
(slowing is consistent with δB ~ a few Gauss at the wall)

— A small island driven by coupling to the ideal MHD instability

(the wall has reduced the growth rate to a resistive time scale)

● Other MHD activity and increasing density have been eliminated as likely causes
of the rotational slowing
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MODELS FOR RWM STABILITY IN A RESISTIVE PLASMA

● Cylindrical model with external ideal instability and internal resonant surface
[J.M. Finn, Phys. Plasmas 2, 3782 (1995)]

— Coupling of ideal mode to a small island allows rotational stabilization

— Applicable to toroidal plasma where external kink always couples to internal
resonances

● Extended to non-linear model with plasma rotation frequency determined self-
consistently from torque balance
[C. Gimblett and R.J. Hastie, Phys. Plasmas (to be published)]



NONLINEAR MODEL ALLOWS SUDDEN CHANGES IN PLASMA
ROTATION FREQUENCY AND MODE GROWTH RATES

● Plasma rotation Ω from torque balance
is multivalued (depends on mode rotation)

● At the upper knee (if outside the stable
window) torque balance is lost, and the
rotation frequency drops to the lower branch

333–99
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● Growth rate is small (γ << τ–1) on the upper
branch. Rotation slowly decreases as mode
amplitude increases

w

● Growth rate is much larger (γ ~ τ–1) on the 
lower branch

w

● Similar to "forbidden" frequency bands for
tearing modes [D. Gates and T. Hender,
Nucl. Fusion 36, 273 (1996)]
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(Gimblett and Hastie, Phys. Plasmas, to be published)



ROTATION CAN LEAD TO STABILITY OR SMALL
GROWTH RATES WITHOUT COMPLETE STABILIZATION

● WIndow for complete stability in β and rw/a
is small, requires
— No-wall ideal mode weakly unstable
— Ideal-wall resistive mode weakly stable
— Modest plasma rotation Ω > τ–1 

(unstable for Ωτw >> 1)

● Outside the stability window (or if no window
exists) growth rate can be very small

333–99
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● Larger stability window is possible in
presence of a saturated island

— γ << τ–1 (1–2 orders of magnitude)
— Difficult to distinguish from saturated island

w

4.00.0 1.0 2.0 3.0 5.0 6.0 7.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4.00.0 1.0 2.0 3.0 5.0 6.0 7.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

γ

ω

Ω

Ω

[Gimblett and Hastie, Phys. Plasmas (to be published)]



MODEL IS QUALITATIVELY CONSISTENT
WITH TRAJECTORY OF DIII–D WALL-STABILIZED DISCHARGES

● Evolution at high beta
has three phases:

— Slow mode growth with
constant or slowly decreasing
plasma rotation

333–99
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— More rapid deceleration
of rotation as slow mode
growth continues

— Rapid mode growth
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MODEL QUALITATIVELY PREDICTS RESULTS
OF VARYING THE TORQUE BALANCE

● Neutral beam torque increased ~20% by reducing voltage 75 ⇒  50 keV (at constant power)

● Rotation profiles ~ identical at transition to
faster mode growth (greater torque ⇒ longer
survival before transition)

333–99
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● Greater torque ⇒  faster initial rotation ● Mode amplitude at onset is a little
larger in the case with greater torque

Figures coming

Figures coming

Figures coming
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CONCLUSIONS

● Resistive MHD model predicts several qualitative features of experiments

— Very slow initial growth of mode,   γ τ<< −
w

1

— Gradual slowing of rotation, consistent with torque from a very small

magnetic perturbution 
  

<



~ 1 G at wall

— Sudden decrease in rotation, at a critical rotation frequency and mode
amplitude

— Increase in mode growth rate to γ τ~ w
1−  at the lower rotation frequency

● If this model applies, active feedback control may be required for sustained
operation above the no-wall limit

● More quantitative modeling and comparison to experiment is needed

— Stability and torque balance in toroidal geometry

— Existence of islands coupled to ideal-plasma RWM


