STABILIZATION OF RESISTIVE WALL MODES BY PLASMA ROTATION

by E.J. STRAIT

with

R.J. LA HAYE, J.T. SCOVILLE, A.D. TURNBULL, A.M. GAROFALO,^{*} G.A. NAVRATIL,^{*} E.D. FREDRICKSON,[†] L.C. JOHNSON,[†] M. OKABAYSHI,[†] M. GRYAZNEVICH,[‡] and E.A. LAZARUS^{Δ}

*Columbia University †Princeton Plasma Physics Laboratory [‡]UKAEA Fusion ^ΔOak Ridge National Laboratory

Presented at 41st Annual Meeting of the Division of Plasma Physics Seattle, Washington

November 15–19, 1999

Columbia

Abstract Submitted for the DPP99 Meeting of The American Physical Society

Sorting Category: 5.1.1.2 (Experimental)

Stabilization of Resistive Wall Modes by Plasma **Rotation**¹ E.J. STRAIT, R.J. LA HAYE, J.T. SCOVILLE, A.D. TURNBULL, General Atomics, A.M. GAROFALO, G.A. NAVRATIL, Columbia University, E.D. FREDRICKSON, L.C. JOHN-SON, M. OKABAYASHI, Princeton Plasma Physics Laboratory, M. GRYAZNEVICH, UKAEA Fusion, E.A. LAZARUS, Oak Ridge National Laboratory — Slowly rotating resistive wall modes (RWMs) are often observed in DIII–D plasmas which exceed the ideal MHD beta limit calculated without a wall. Theory predicts that sufficiently large plasma rotation in the presence of a resistive wall should stabilize the RWM. Improved stability is found with the broader rotation profile obtained by reducing the beam voltage at constant power. Recent counter-injection experiments should help determine which velocity is relevant for stabilization, by separating the diamagnetic and $E \times B$ contributions to the fluid rotation. Slowing of plasma rotation is often observed above the no-wall stability limit, and could be consistent with magnetic braking by field errors or small-amplitude RWMs. If the slowing cannot be avoided, active feedback stabilization will be required.

¹Supported by U.S. DOE Contracts DE-AC03-99ER54463, DE-AC02-76CH03073, and DE-AC05-96OR22464, and Grant DE-FG02-89ER53297.

X

Prefer Oral Session Prefer Poster Session E.J. Strait strait@fusion.gat.com General Atomics

Special instructions: DIII-D Poster Session 1, immediately following CL Hsieh

Date printed: July 16, 1999

Electronic form version 1.4

CAN THE RESISTIVE WALL MODE BE STABILIZED BY PLASMA ROTATION?

- Beta greater than the ideal MHD no-wall limit has been sustained for durations >> τ_w (resistive wall time)
- However, a gradual slowing of rotation prevents $\beta > \beta^{no-wall}$ for long pulses

- Typical deceleration rate
$$\frac{1}{\Omega} \frac{d\Omega}{dt} \sim (100 \text{ ms})^{-1}$$

Is rotational slowing an unavoidable consequence of operation above the no-wall limit?

PLASMA STABILIZED BY ROTATION AND RESISTIVE WALL ABOVE NO-WALL $\beta_{\text{N}}\text{-LIMIT FOR}$ ~200 ms

- Wall-stabilized duration is much longer than wall time ($\tau_w \leq 6$ ms)
- Plasma rotation slows continuously when β exceeds the no-wall limit
- Slowly rotating n = 1 mode starts to grow after toroidal rotation of q = 3 surface has decreased below 1–2 kHz

PLASMA ROTATION SLOWS AS β_{N} EXCEEDS NO WALL LIMIT

ONSET OF SMALL AMPLITUDE RWM CORRELATES WITH ROTATION SLOWDOWN IN AT MODES

- High q_{min} (~2), low |_i,
 DND discharges with
 q₉₅~4.5
- Rotation collapse and confinement degradation begin at mode onset
- Ideal MHD code GATO indicates that the n=1 kink mode is marginally unstable without a wall at 3.2 s (β_N = 4|_j)
- Mode grows very slowly (« 1/τ_w) and rotates slowly, amid fast plasma rotation (≥ 4 kHz)

RWMs LIMIT PERFORMANCE OF AT PLASMAS

- I_p = 1.2 MA, B_T = 1.6 T
 q_{min} ~ 1.7, q₉₅ ~ 5.5
- β_{N} limited to about 4 I_i (no wall limit) by bursting RWMs
- Higher NBI power improves stability and duration
- 75 % current non-inductive >50% bootstrap

RWM BURSTS SELF-STABILIZE THROUGH SMALL BETA COLLAPSES

• Plasma rotation slows during β_N "peaks", recovers in β_N "valleys"

PLASMA ROTATION INSUFFICIENT FOR COMPLETE RWM SUPPRESSION

• In conditions of improved detection, small amplitude, slowly growing (often $\gamma \ll 1/\tau_w$) RWMs can usually be observed when $\beta_N >$ no wall limit

Working hypothesis

The plasma rotation does not completely suppress the RWM, but slows the growth rate.

The electromagnetic torque from the RWM reduces the plasma rotation.

- The confinement degradation due to small amplitude RWMs (e.g. through tearing or reduced E×B shear) can decrease β_N < no wall limit, leading to beta saturation or rollover
- If the plasma rotation decreases below a critical value while β_N > no wall limit, the mode growth transitions to a $1/\tau_w$ rate, usually leading to a minor disruption

WHY DOES PLASMA ROTATION DECREASE?

- Slowing of plasma rotation is observed when β exceeds $\beta_{crit}^{no-wall}$
- Possible causes for the slowing include electromagnetic drag from
 - A small-amplitude RWM (slowing is consistent with $\delta B \sim a$ few Gauss at the wall)
 - A small island driven by coupling to the ideal MHD instability (the wall has reduced the growth rate to a resistive time scale)
- Other MHD activity and increasing density have been eliminated as likely causes of the rotational slowing

MODELS FOR RWM STABILITY IN A RESISTIVE PLASMA

- Cylindrical model with external <u>ideal</u> instability and internal resonant surface [J.M. Finn, Phys. Plasmas 2, 3782 (1995)]
 - Coupling of ideal mode to a small island allows rotational stabilization
 - Applicable to toroidal plasma where external kink always couples to internal resonances
- Extended to non-linear model with plasma rotation frequency determined selfconsistently from torque balance [C. Gimblett and R.J. Hastie, Phys. Plasmas (to be published)]

NONLINEAR MODEL ALLOWS SUDDEN CHANGES IN PLASMA ROTATION FREQUENCY AND MODE GROWTH RATES

- Plasma rotation Ω from torque balance is multivalued (depends on mode rotation)
- Growth rate is small ($\gamma << \tau_w^{-1}$) on the upper branch. Rotation slowly decreases as mode amplitude increases
- At the upper knee (if outside the stable window) torque balance is lost, and the rotation frequency drops to the lower branch
- Growth rate is much larger ($\gamma \sim \tau_w^{-1}$) on the lower branch
- Similar to "forbidden" frequency bands for tearing modes [D. Gates and T. Hender, Nucl. Fusion <u>36</u>, 273 (1996)]

(Gimblett and Hastie, Phys. Plasmas, to be published)

ROTATION CAN LEAD TO STABILITY OR SMALL GROWTH RATES WITHOUT COMPLETE STABILIZATION

- Window for complete stability in β and r_w/a is small, requires
 - No-wall ideal mode weakly unstable
 - Ideal-wall resistive mode weakly stable
 - Modest plasma rotation Ω ≥ τ_w⁻¹
 (unstable for Ωτ_w >> 1)
- Larger stability window is possible in presence of a saturated island
- Outside the stability window (or if no window exists) growth rate can be very small
 - $\gamma \ll \tau_w^{-1}$ (1–2 orders of magnitude)
 - Difficult to distinguish from saturated island

MODEL IS QUALITATIVELY CONSISTENT WITH TRAJECTORY OF DIII-D WALL-STABILIZED DISCHARGES

- Evolution at high beta has three phases:
 - Slow mode growth with constant or slowly decreasing plasma rotation
 - More rapid deceleration of rotation as slow mode growth continues
 - Rapid mode growth

333-99

MODEL QUALITATIVELY PREDICTS RESULTS OF VARYING THE TORQUE BALANCE

- Neutral beam torque increased ~20% by reducing voltage $75 \Rightarrow 50$ keV (at constant power)
- Greater torque \Rightarrow faster initial rotation

Figures coming

 Rotation profiles ~ identical at transition to faster mode growth (greater torque ⇒ longer survival before transition)

Figures coming

• Mode amplitude at onset is a little larger in the case with greater torque

Figures coming

- Resistive MHD model predicts several qualitative features of experiments
 - Very slow initial growth of mode, $\gamma \ll \tau_w^{-1}$
 - Gradual slowing of rotation, consistent with torque from a very small magnetic perturbution $\left(\leq 1 \text{ G at wall} \right)$
 - Sudden decrease in rotation, at a critical rotation frequency and mode amplitude
 - Increase in mode growth rate to $\gamma \sim \tau_{W}^{-1}$ at the lower rotation frequency
- If this model applies, active feedback control may be required for sustained operation above the no-wall limit
- More quantitative modeling and comparison to experiment is needed
 - Stability and torque balance in toroidal geometry
 - Existence of islands coupled to ideal-plasma RWM

