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Theory of the Poloidal Spin-up Precursor to Transport
Barrier Formation1 G.M. STAEBLER, General Atomics — The phe-
nomenon of a sudden change in the poloidal flow prior to the reduction
in transport and the steepening of temperature and density profiles has
been observed both at the edge (high-modes) and in the core (enhanced
reversed shear (ERS-modes) of tokamaks. The poloidal spin-up precur-
sor is narrowly localized in the (radial) direction across magnetic flux
surfaces. Although the reduction of turbulent transport is consistent
with the theory of E × B flow shear suppression, the localized poloidal
spin-up precursor has not been explained by the theory until now. It will
be shown that the observed flow pattern is well described by a new class
of bifurcation to the momentum balance equations. The new physics
follows from extending the standard neoclassical theory of poloidal flow
damping to include the turbulent viscous stress. The new bifurcation
results from balancing the non-linear turbulent viscous tress with the lin-
ear poloidal flow damping due to the neoclassical parallel viscous stress.
The new bifurcation results in a mono-polar E ×B flow structure (with
a large poloidal component) which is narrowly localized in the radial
direction. The peak in the flow is shown to reduce and finally disappear
as the diamagnetic velocity shear increases.
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THEORY OF THE POLOIDAL SPIN-UP PRECURSOR TO
TRANSPORT BARRIER FORMATION

! The poloidal velocity of carbon ions has been observed to spin-up in a narrow layer 
as a precursor to both H-mode and Type I ERS [1] transport barrier formation. The
carbon is a tracer for changes in the ExB velocity.
[1] R.E. Bell, F. M. Levinton, S. H. Batha, E. J. Synakowski and M. C. 
Zarnstorff, Phys. Rev. Lett. 81 (1998) 1429.]
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PROPERTIES OF THE POLOIDAL SPIN-UP PRECURSOR

! The precursor is a monopolar excursion of the ExB velocity.

! The temperature and density profiles are not observed to change over the time it 
takes the spin-up to occur. Thus, the spin-up is in the perpendicular velocity 
contribution to the ExB velocity not the diamagnetic velocity.

! The contribution to the ExB velocity from the perpendicular velocity diminishes as 
the diamagnetic velocity builds during the transport barrier formation.

! Transport barriers without poloidal spin-up precursors are also observed (Type II 
ERS, DIII-D NCS, and slow H-modes)

! It will be shown that all of these properties are reproduced by a new class of 
bifurcation to the momentum balance equations, which will be called the jet 
bifurcation due to its localized mono-polar structure across magnetic flux surfaces.



PERPENDICULAR VISCOUS STRESS DUE TO DRIFT
WAVES

! Quasilinear calculations in a sheared slab magnetic field geometry [2] have shown
that the viscous stress tensor due to drift waves (ITG,TEM) has the general form
[2][R. R. Dominguez and G. M. Staebler, Phys. Fluids B5 (1993) 3876]

Πxy = ηyy γExB+ ηyz  γz  ,    where          γz    = -duz/dx
Πxz = ηzz  γz    + ηzy γExB                                       γExB = -duExB/dx

! The gradient lengths of the velocity (and electric field) must be short in order for 
the turbulent viscous stress to compete with the neoclassical viscous stress (poloidal 
flow damping term). Thus, only gradients of the flows will be retained and a thin 
slab approximation will be used for the perpendicular momentum balance equation:
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! The source free steady state toroidal momentum balance equation reads

dΠxϕ/dx = 0,

! Integration with zero stress at the boundary obtains the non-trivial solution

γz = Cz γExB , where    Cz = (Bθηyy–Bφηzy)/(Bφηzz–Bθ ηyz)

! This is used to eliminate the parallel velocity making the perpendicular viscous 
stress only a function of the ExB velocity shear.

! The neoclassical flow is:
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MODEL FOR THE VISCOUS STRESS DUE TO DRIFT
WAVES

! The viscous stress due to drift waves has the general property that for low ExB
velocity shear  |γExB | < γL  the local viscosity is large due to ion temperature
gradient (ITG) modes.

! For large ExB shear |γExB | > γH the local viscosity is smaller since the ITG modes
are quenched by the ExB shear.

! Electron temperature gradient modes could provide the viscosity since they are not
stabilized by the level of ExB shear needed for the ITG modes.

! The following piecewise linear model realizes these properties.
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where      β = γLγH(µL-µH)/(γH-γL),  α= (µLγL-µHγH)/(γH-γL)



Multiplying Eq.1 by (γE×B-γnc), a first integral may be obtained using this model

E S mn (u u )1
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             Πxy/mnµLγL                                          (S-S(γnc))/nmµLγL2

        
                           γE×B/γL                                                          γE×B/γL

Parameter:      γH/γL = 2.0,  µL/µH = 4.0, γnc/γL = 0.2



DUAL GENERALIZED PHASE TRANSITION

! The jet bifurcation is a solution to a new type of generalized phase transition model,
which is dual to the usual Ginzburg-Landau model.

! The non-linearity is in the field gradient (kinetic energy) rather than the field 
(potential energy)

! The jet solution is analagous to a topological solition. It connects the two ground
states at  mγH
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  THE STRESS ENERGY EVOLVES WITH γnc

                            γnc = 0.0                                          γnc = γL
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! The stress energy is symetric for γnc = 0.0
! For γnc > γL the point γnc becomes unstable

(no seed perturbation is required for a jet)



                           γnc = (γH+γL)/2                                 γnc = (4/3)(γH+γL)/2
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! For γnc > (γH+γL)/2 no jet is possible since S(γH) < S(γL).

! A jet is energetically favorable if S(mγH) < S(γnc).

- A jet may be energetically unfavorable if only one minimum is below S(γnc).



DETAILS OF THE JET SOLUTION

! Domain:  x<x0 and x>x2 , |γExB | < γL

in this domain Eq. 1 becomes: (f = uE×B – uE B
nc
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The complete solution in the domain x={x0,x1} with f(x0) =0 and γE×B(x0) = γH is 
given by  ( λ α νm = / )
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The width (x1–x0) is determined by the boundary condition  γE×B = γL at x1.
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 The width scales like (µL/ν)0.5 so smaller neoclassical damping make the jet wider.



! The solution in the domain x={x1,x2} where γE×B = –γH at x2, and f(x2) = 0 is

u u x xExB ExB
nc

m H
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2 m= + + −λ γ γ λ( )sin[( ) / ]

! Matching the two solutions at x1 determines the width (x2–x1). This completes the 
jet. The position x0 is arbitrary unless  spatial variations of γnc are retained.

Viscous Stress and Stress energy for the best fit to the TFTR data.
             Πxy/mnµLγL                                          (S-S(γnc))/nmµLγL2
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TFTR ERS DATA IS WELL FIT BY THE JET

! The carbon poloidal velocity data gives the approximate ExB velocity in the region 
of the localized excursion.
R. E. Bell, F. M. Levinton, S. H. Batha, E. J. Synakowski and M. C. Zarnstorff, 
Phys. Rev. Lett. 81, 1429 (1998).

! TFTR data for a particular discharge:
r = 304cm-R, R=260cm, ne = 1.45x1013/cm3, Ti = 5.7keV, q=2.6, mi = 2 Mproton

! Fit parameters for the jet solution:
γL = 3x105/s , γH = 9 γL , µL = 2.8m2/s, µH = µL /40 , x0 = 300cm,

unc = 106cm/s -γnc
 (x-280cm), γnc = 1.3x104/s, ν= 346/s computed from
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! The linear growth rate (γL) and  effective diffusivity (from particle transport) (µL) 

are consistent with TFTR calculations prior to spin-up and ERS transition.



       Best fit to TFTR data UExB                    Decay of UEXB-Unc with increasing γnc
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                                                                     γnc = 1.3x104/s,            γnc = γL,

                                                                     γnc = (γL+γH)/2  maximim

! The jet excursion shrinks and disappears as γnc increases.



JET PROPERTIES

! The jet bifurcation requires a seed shear perturbation if γnc < γL:

— The smallest perturbation is in the direction of γnc

— Transport barriers can form without jets even with balanced NBI.

! There is another bifurcation path through the toroidal momentum balance equation.
— The toroidal momentum balance equation does not have the neoclassical term ν

so the timescale is slower (transport time) and it is not intrinsically localized.
— DIII-D NCS and TFTR type II ERS transitions have no jet precursors.

! The strongly off-diagonal structure of the viscous stress tensor due to drift waves
predicts that there should be a parallel velocity feature at the location of the ExB
velocity excursion.
— The parallel flow does not have to have the same monopolar structure of the

ExB velocity since Cz is not constant. (γz = Cz γExB)



CONCLUSION

! The jet bifurcation does indeed reproduce the properties of the observed poloidal
spin-up precursor.

! Transport barriers which form without jets can be accounted for.

! The fast growth of the jet (ν) and its disappearance once the temperature or density
gradients increase, fits experimental observations.

! The monopolar character and strong radial localization of the jet fits the data.

! An analytic model solution for the jet can be fit to TFTR data with realistic
parameters for the linear growth rates, and effective momentum diffusivities. The
neoclassical poloidal damping rate is computed from theory so the width of the jet
determines the momentum diffusivity.

! The jet theory predicts the existence of a parallel velocity excursion within the ExB 
jet due to the off-diagonal nature of the viscous stress.

! Triggering jets with localized perpendicular momentum sources (e.g. IBW) could
dramatically lower the power required for a transport barrier.


