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Electron Cyclotron Current Drive on DIII-D: Ana-
lyzing the Analysis1 DAVID SCHUSTER, Brown University, C.C.
PETTY, T.C. LUCE, H.E. ST. JOHN, General Atomics, B.W. RICE,
Lawrence Livermore National Laboratory — Electron Cyclotron Cur-
rent Drive (ECCD) can be used to modify the current profile at differ-
ent locations with in the plasma. Previously, the radial profile of ECCD
was measured on the DIII–D tokamak using off-axis application and
was found to be broader than theoretical predictions. In addition, the
magnitude of the experimental ECCD exceeded theoretical estimates.
In order to better explain these differences, simulations of the evolu-
tion of the poloidal magnetic flux during ECCD will be done using the
ONETWO transport code. The simulated data can be propagated for-
ward and backward through the same analysis techniques practiced on
the actual experimental data. This process will help reveal any error
introduced via approximations made in the analysis, such as the effect
of smoothing the constituents of the Grad-Shaffranov equation. In addi-
tion, the experimental and simulated evolution of motional Stark effect
(MSE) polarimetry data during off-axis ECCD will be compared.
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ENG-48, and by the U.S.1999 National Undergraduate Fellowship Pro-
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I.  INTRODUCTION AND BACKGROUND

� Previous experiments on the DIII–D tokamak have demonstrated off-axis
electron cyclotron current drive (ECCD) from the evolution of the poloidal
magnetic flux (ψ) determined from EFITs using motional Stark effect
(MSE) data

� Results:

— Measured location of ECCD agreed with theory

— Measured ECCD was usually larger than theory

— Measured width of ECCD was broader than theory

� Since the EFIT analysis used only a fit to the MSE data, we decided to test
whether the disagreements between ECCD theory and measurements are
evident in the raw MSE data by means of simulations
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SCHEMATIC PICTURE OF ECCD
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� Directional electron
cyclotron waves heat
electrons moving in
one toroidal direction

� Since heating decreases
the collision frequency,
resonant electrons will
contribute a larger amount
of toroidal current than
equivalent electrons
moving in the opposite
direction that have not
been heated

� Total momentum of
plasma is conserved as
ions are dragged in opposite
direction (but Ji << Je since mi >> me)

Electron Velocity Space Diagram
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CURRENT DRIVE IS DETERMINED EXPERIMENTALLY FROM 
EVOLUTION OF RECONSTRUCTED MAGNETIC EQUILIBRIUM
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� EFIT code reconstructs the magnetic
equilibrium using external magnetic
measurements and motional Stark Effect
(MSE) data

� Poloidal magnetic flux ψ is therefore
determined as a function of space and time

� Noninductive current profile is determined
from parallel Ohm’s law:
JNI = J|| – σneo E||
J|| ∝ ∇2ψ  Total current density

E|| ∝        Loop voltage / 2πR

σneo   Calculated plasma conductivity

∂ψ
∂t

Cross section
of magnetic
equilibrium
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ECCD PROFILE FROM EFIT EVOLUTION IS BROADER THAN THEORY
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II.  SINCE ECCD ANALYSIS IS DERIVED FROM MSE DATA,
SIMULATIONS OF MSE SIGNALS WITH AND WITHOUT ECCD

ARE MADE FOR DIRECT COMPARISON WITH MEASUREMENTS

� Evolution of magnetic equilibrium simulated using ONETWO transport code

— Plasma boundary is fixed to experimental shape

— Time history of measured density and temperature profiles is included

— Magnetic equilibrium determined from Grad-Shafranov equation

— Current and loop voltage evolution determined by Faraday’s and
Ohm’s laws

— ECCD profile calculated using TORAY ray tracing code
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SIMULATIONS SHOW THAT OFF-AXIS ECCD PERTURBS THE
CURRENT PROFILE RATHER THAN THE LOOP VOLTAGE

PROFILE (AFTER INITIAL BACK EMF EFFECT DECAYS AWAY)

Start of ECCD 240 ms After Start of ECCD
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III. THE MOTIONAL STARK EFFECT (MSE) DIAGNOSTIC MEASURES
THE CHANGES IN THE INTERNAL MAGNETIC FIELDS DURING ECCD
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CHANGE IN Bz MEASURED BY MSE DURING OFF-AXIS ECCD IS
DIRECTLY RELATED TO LOCAL CHANGE IN CURRENT DENSITY PROFILE

� Ampere’s law:   
∂Bz
∂R

  ª  µ0 Jφ

� Thus, the local change in Jφ during ECCD is proportional to
the local change in B z/ R measured by MSE

⇒ The measured change in B z/ R during ECCD is not used
directly, but rather is compared to a simulation of the
change in B z/ R since modifications of the Ohmic,
bootstrap, and neutral beam currents can also cause a
local change in Jφ (in addition to ECCD)
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SIMULATIONS OF MSE DATA REPRODUCE THE MEASURED
CHANGES IN Bz DURING OFF-AXIS ECCD
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MSE MEASUREMENT SHOWS THAT CURRENT DENSITY 
INCREASES IN A LOCALIZED REGION NEAR THE ECH RESONANCE, 

IN AGREEMENT WITH SIMULATION
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THE MAGNITUDE OF THE LOCALIZED CHANGE IN CURRENT
DENSITY FROM MSE MEASUREMENTS IS CONSISTENT WITH

THE PREDICTED CHANGE FROM CURRENT THEORIES
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SIMULATION USING ECCD PROFILE FROM FITTED EFIT
EVOLUTION GIVES TOO BROAD A MSE RESPONSE

COMPARED TO MEASUREMENT
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IV.  SIMULATIONS SHOW THAT PARAMETRIZING THE CURRENT PROFILE
IN THE EFIT RECONSTRUCTION BROADENS THE DEDUCED ECCD PROFILE

� EFIT reconstruction uses

Jφ = R [P´(ψ) +

P (ψ) = pressure

F (ψ) = poloidal current

ψ = radial coordinate

� Parametrization of P(ψ) and F(ψ) using
polynomials or splines smooths over

local structure in J||

� Resulting ECCD profile deduced from
fitted EFIT evolution is broadened and
the integrated current drive is 
not conserved
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V.  SUMMARY

� Off-axis ECCD locally perturbs the current density more than
the loop voltage

� MSE measurements show an increase in current density at the
ECH resonance location that is at least as localized as theoretical
predictions

� Simulations indicate that the actual ECCD may be closer in
magnitude (and width) to theoretical predictions than previously
believed because the parameterized magnetic equilibrium
reconstructions broaden the apparent ECCD profile


