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Fluctuation characteristics measured in DIII-D discharges are compared with features predicted from

gyro-kinetic codes using measured experimental profiles and geometry. In Ohmic discharges, the

dominant instability is predicted to be either the dissipative trapped electron mode or the ion temperature

gradient mode, depending on specific conditions. Measurements of turbulence spectra, wavenumber

dependence, radial correlation length and dispersion have been obtained through a density scan in the

neo-Alcator and saturated confinement regimes. This allows comparison of measured turbulence

characteristics with code predictions when the dominant modes changes, aimed to identification of mode

physics. In this density range, the confinement changes from neo-Alcator scaling to saturated OHmic

confinement. 
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Summary

 

•

 

Density fluctuations observed in DIII-D possess specific characteristics and 
scaling dependence consistent with predictions associated with the Ion 
Temperature Gradient (ITG) instability.

 

-

 

frequency and spatial scale are consistent with expectations

 

•

 

The mode is observed in high density saturated Ohmic confinement 
discharges whose magnitude increases rapidly above the saturation density.

 

•

 

Direct implications include: (1) Ohmic saturation is due to turning on of ITG 
mode due to density profile flattening and heating of ions (2) the ITG mode is 
real and capable of anomalous transport.

 

•

 

Indirect implications: (1) the ITG mode may be the dominant mode in real 
experiments, (2) ITG physics based modeling could be valuable predictive 
tools
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Motivation

 

•

 

Theoretical modeling represent a possible route to achieving a physics-
based predictive capability.

 

-

 

attractive tool for present and future R&D

 

-

 

interpolate and extrapolate

 

•

 

Present hypotheses:

 

-

 

anomalous transport is dominated by turbulent transport,

 

-

 

dominant mode is often the ion temperature gradient instability

 

•

 

However, underlying physics of the turbulence is unverified experimentally, 
e.g. instability could be driven by a different source of free energy.

 

•

 

If a different mode is present and dominant, the scaling characteristics could 
be significantly different, rendering the code useless for extrapolation or 
enhancing physical understanding.
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Background

 

•

 

The 

 

η

 

I

 

 or Ion Temperature Gradient (ITG) mode has been proposed as the 
dominant instability in high density plasmas, responsible for anomalous 
transport.

 

1

 

•

 

Linear and nonlinear codes based on gyrokinetic or PIC treatments typically 
predict that the ITG mode is dominant.

 

•

 

Although experimental studies have observed strong turbulent fluctuations 
in plasma density, few of the turbulence features can be associated uniquely 
with the ITG mode.

 

2

 

1. Coppi, 

 

et al

 

, IAEA 1984.

2. Brower, D.L., 

 

et al

 

, PRL 

 

59

 

, 48 (1987).
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Approach

 

•

 

In low density neo-Alcator discharges, dominated by electron conduction, 
energy confinement scales with density.

 

•

 

At higher density, ion conduction becomes more important, and the energy 
confinement saturates, becoming independent of density.

 

•

 

Compare predicted mode scaling with onset of neo-Alcator saturation to 
provide coincidental evidence for importance of microturbulence.

 

•

 

Characterize turbulence features in the simplest possible plasma discharges 
in order to provide identification of the mode.

 

•

 

Monitor turbulence characteristics with FIR scattering, reflectometer 
(poloidal dispersion system and correlation system), PCI, BES, and edge 
probe during the following discharges:

1.  at low density within the neo-Alcator confinement scaling regime in which 
confinement scales with density;

2. in the saturated regime in which confinement time is independent of density 
and the ITG mode is predicted to be unstable and dominant
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Accessing Regimes of Different Dominant Modes

 

•

 

By scanning the plasma across 
regimes whose dominant modes 
are predicted to be different, mode 
identification becomes possible.

 

•

 

The dominant mode identifiers may 
be observed, e.g. low frequency 
associated with ITG mode at high 
density.
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Coherent Thomson Scattering 

 

•

 

A spatially varying radial electric field affects the scattered spectrum via an 
ExB Doppler shift: 

 

•

 

Therefore, a sheared radial electric field results in different Doppler shifts at 
different location within the scattering volume for improved resolution.
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Discharge Shape and Parameters

 

•

 

Low elongation was chosen to reduce anomalous rotation thence reducing 
the electric field and ExB Doppler shift.

 

30LT

Interferometer

30LT

330LT/RT

Mon Oct 18 16:32:30 1999

shot  99805
time 1150
chi**2 14.384

Rout(m) 1.661
a(m) 0.645

elong 1.202

W (MJ) 0.097

q95 3.577

Rm(m) 1.705

Wdia(MJ) 0.137

Ipmeas(MA) -0.967
BT(0)(T) -1.905

Rmidin(m) 1.017
Rmidout(m) 2.306

qm 1.055

nev1(e19) 3.518
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Discharge Timing and Sequence

 

•

 

Neutral beam blips were applied at two different times during the discharge 
to allow measurement of ion temperature and impurity rotation via charge 
exchange recombination (CER) spectroscopy.
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Density and Temperature Profiles

 

•

 

Density scan resulted in differing temperature profiles.

 

•In general, higher density discharges are more peaked.
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Density Scan through neo-Alcator Regime

•In DIII-D Ohmically heated 
discharges, the density 
was scanned through the 
neo-Alcator scaling 
regime and into saturated 
confinement.

•Experimental goal was to 
search for a mode which 
turned on when 
confinement saturated, 
then compare mode 
features with predictions 
of linear and non-linear 
codes.
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Increased Fluctuations seen at Higher Density

•Increased fluctuations are 
observed at higher density

- above density associated 
with saturation

•Data averaged over 3 ms 
intervals, taken between 
sawteeth of 20 ms period.
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Increased Fluctuations Concentrated in 
Lower Frequency Range

•The increased fluctuations 
observed at higher density are 
concentrated over low frequencies

- wings of spectra overlay, 
consistent with increased 
fluctuations representing a new 
low frequency feature

•Qualitative features are similar at 
slightly higher wavenumber 

(kθ = 5 cm-1).

•Data averaged over 3 ms intervals, 
taken between sawteeth of 20 ms 
period.
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Increased Fluctuations seen at Higher Density

•The increased fluctuations 
observed at higher density are 
concentrated over low 
frequencies

- wings of spectra overlay, 
consistent with increased 
fluctuations representing a 
new low frequency feature

•Qualitative features are similar 
at slightly higher wavenumber 

(kθ = 5 cm-1).

•Data averaged over 3 ms 
intervals, taken between 
sawteeth of 20 ms period.
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Increased Fluctuations seen at Higher Density

•The increased fluctuations 
observed at higher density are 
concentrated over low 
frequencies

- wings of spectra overlay, 
consistent with increased 
fluctuations representing a 
new low frequency feature

•Qualitative features are similar 
at slightly higher wavenumber 

(kθ = 5 cm-1).

•Data averaged over 3 ms 
intervals, taken between 
sawteeth of 20 ms period.
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Similar Characteristic Scaling at 
Shorter Wavelength

•At shorter wavelength, turbulence 
level is smaller at lower density.

•Fluctuations at kθ = 5 cm-1 turn on 
at higher density.

99805 vs 99807 ch1

-600 -400 -200 0 200 400 600
0

1.5x10-4

S
(f

)  / 
<

n e
>

S(f)/ <ne>
high density
(<ne> = 3.7x10

13
 cm

-3
)

99805

S(f)/ <ne>
low density
(ne = 1.2x10

13
 cm

-3
) 

99807

Frequency (kHz)

kθ = 5 cm-1

Scattered Fluctuation Spectra:
Low versus High Density

-400 0 400

Difference



18 of 27
November 24, 1999 11:34 am

NATIONAL FUSION FACILITY
S A N  D I E G O

DIII–D

Statistical Dispersion of Fluctuations
Consistent with ExB Velocity

•Frequency width ∆f to define mode mean frequency.

•Fluctuations measured at two 
different wavenumbers k1 and k2.

•Mean phase velocity:

compared with the ExB velocity: 

for Er ≈ 1 kV/m.
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Radial correlation length approximately same as either rq,s 
or 5-8 rs - in general agreement with both ITG and electron 

drift wave predictions

•Generally   ∆r > ρs

• ∆r ~ 5-8 ρs is general 
prediction of many 
theories.

•Magnitude and radial 
behaviour generally 
consistent with both 
ITG and electron drift 
waves.
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Poloidal phase varies as density changes

•ne low ~ 0.8x1013 cm-3

•ne med. ~ 1.7x1013 cm-3

•ne high ~ 3.7x1013 cm-3

•Poloidal phase of fluctuations ( ~ kθ ) varies with ne.

• Is poor phase at high ne due to counter-propagating modes?
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Edge Turbulence Wavenumber

•Data obtained via Phase 
Contrast Imaging (PCI) 
indicate that the edge 
mean wavenumber scales 
with line average (and 
local) density.

•Consistent with constant 
value of 

•Pellet fueled discharges 
exhibit a different scaling.
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Dispersion of Edge Fluctuations Similar in
High and Low Density Discharges

•Dispersion measured via 
PCI in the edge indicates 
phase velocity 
approximately 0.5 km/s.

•Velocity similar in low and 
high density discharges.
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Gyrokinetic Stability Analysis Predicts 
ITG Mode in High Density Discharges

•Negative value of frequency corresponds to ion diamagnetic drift direction.

•In high density plasma, region of “ITG” mode is much greater, while that of 
“DTE”-like mode is less

• “Electron” mode linear growth rate is still significant in high density plasma.

•In high density plasma, both modes are likely unstable in outer region.
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Value of ηi Much Greater than Threshold Range in 
High Density Plasma

•Linear stability 
predicted via 
parameter:

•Critical value of 1-2 is 
predicted from linear 
theories as 
threshold for 
instability.

•Mode much more 
unstable at higher 
density.
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Density Profile Flattens at Higher Density

•ITG mode becomes 
unstable at higher 
density more because 
the density profile 
flattens than from the 
temperature profile 
peaking.
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Radial Electric Field Affects 
Turbulence and Measured Frequency

•ExB shearing rate, ωExB, although very small, is still comparable to growth 
rate in specific parts of the plasma.

•The radial electric field value, Er, Doppler shift the scattered radiation, still in 
a range comparable to that measured.
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Summary

•Experiments to directly identify turbulence characteristics of the ITG mode 
have been performed in which the density was scanned through the neo-
Alcator regime into saturated confinement:

- confinement saturation was observed at higher density though,

- confinement was not as long as that observed in prior DIII-D experiments.

•Above the density associated with saturation, a low frequency turbulence 
feature is observed (normalized to line average density), while the high 
frequency portion of the spectrum remains constant. 

•Profiles in discharges at densities above the saturation are different such 
that ηI is greater and the ITG mode is unstable. 

•Dispersion measuring reflectometer data is consistent with two modes at 
densities above the saturation density, one mode below.


