Abstract Submitted for the DPP99 Meeting of The American Physical Society

Sorting Category: 5.1.1.2 (Experimental)

High Harmonic Ion Cyclotron Heating in DIII-D: I. Beam-Ion Absorption¹ R.I. PINSKER, J.S. DEGRASSIE, C.C. PETTY, General Atomics, F.W. BAITY, ORNL, S. BERNABEI, PPPL, W.W. HEIDBRINK, UC Irvine, T.K. MAU, UC San Diego, M. PORKOLAB, MIT — Damping of fast Alfvén waves (FW) at high ion cyclotron harmonics ($\omega = n\Omega_i, n > 3$) is an important competing damping mechanism where direct electron damping is intended. The DIII–D experiments described here have demonstrated strong ion cyclotron damping on energetic deuterons at harmonics as high as $4\Omega_{\rm D}$. Most of the discharges in this study combine deuterium neutral beam injection (NBI; $P_{\rm NBI} \ge 2$ MW) with 60 MHz FW ($P_{\rm FW} \sim 1-2$ MW, $B_{\rm T} = 2.0$ T). We have also compared $4\Omega_{\rm D}$ damping on an injected deuterium beam with $2\Omega_{\rm H}$ damping on a hydrogen beam, and studied $3\Omega_{\rm He^3}$ damping on an injected He³ beam. In all cases, substantial central electron heating is observed. Observations of the D-D reaction rate clearly indicate significant damping at $4\Omega_{\rm D}$. These experiments indicate the importance of high harmonic damping in the presence of an energetic ion species and demonstrate the usefulness of this heating scenario.

¹Supported by U.S. DOE Contracts DE-AC03-99ER54463, DE-AC05-96OR22464, and DE-AC02-76CH03073, and Grant DE-AC03-95ER54299.

X

Prefer Oral Session Prefer Poster Session R.I. Pinsker pinsker@gav.gat.com General Atomics

Special instructions: DIII-D Poster Session 2, immediately following TE Evans

Date printed: July 16, 1999

Electronic form version 1.4