SUSTAINMENT OF PLASMA ROTATION BY ICRF

F. W. Perkins and R. B. White
Princeton Plasma Physics Laboratory
Princeton DIII-D Collaboration

Work supported by the U.S. Department of Energy under Contract Nos. DE-AC02-76CH03073 and DE-AC03-99ER54463
OUTLINE

• Background and Motivation
• Representative Experimental Results
• Model Overview
• Angular Momentum Diffusion Equation
• ICRF Model and Torque Density
• ORBIT Code and Collision Upgrade
• Non-Dimensional Rotation Velocity
• Diamagnetic Scaling of Rotation Velocity
• Parameter Studies
• Conclusions
BACKGROUND AND MOTIVATION

- Alcator C-Mod and JET observe development of co-current plasma rotation in ICRF-heated discharges.

- ICRF heating introduces zero (or negligible) angular momentum to the plasma.
 - Experiments have a symmetric k_\parallel - spectrum and contribute no net angular momentum.
 - Even if the k_\parallel spectrum launched is one sided, the angular momentum input is negligible ($k_\parallel = n/R \; ; \; n \approx 12$ for C-Mod)

\[
(\Delta T)_{RF} = \text{RF Torque} = M \Delta v_\parallel R = n \Delta E / \omega
\]

\[
(\Delta T)_{NBI} = \text{typical NBI torque} = \Delta E R v_{beam}^{-1}
\]

\[
\frac{\Delta T_{RF}}{\Delta T_{NBI}} = \frac{n v_{beam}}{\omega R} \approx \frac{1}{15} < < 1
\]

- What is the mechanism for developing toroidal rotation and how does it scale?
REPRESENTATIVE EXPERIMENTS

5.7 T, 1.0 MA D(H) Discharge

Resonance location scan with B varying and $q_{95} = 4.7$
MODEL OVERVIEW - 1

1. Even though ICRF heating introduces no net torque, there remains the possibility of creating positive and negative torque density regions.

2. Describe plasma response to torque density by an angular momentum diffusion equation.
 • Separated torque density regions lead to finite central rotation

3. Model ICRF heating by the introduction of energetic particles on the equatorial plane and the removal of an equal number of cold particles.
 • Particles are introduced at a particular flux surface — the resonance location— with equal numbers of co- and counter- velocities so there is no angular momentum input.
• Fast-wave refraction leads to midplane heating.
4. Follow particles by ORBIT with ion-ion pitch angle and drag collisions

- Record particle’s flux-surface when Energy → 0.

- Particle’s displacement from originating flux-surface drives a radial neutralizing current and a $j_r B_\theta$ torque density in the background plasma

 - Continuous creation of energetic particles drives steady j_r current

- ORBIT also computes the torque density imparted to the background by energetic-ion collisions

- Total volume-integrated applied torque vanishes to $2 \cdot 10^{-4}$ accuracy.

5. Compute non-vanishing central rotation from torque density

6. Investigate scaling of central rotation and sensitivity to initial conditions

- Particle energy and pitch, resonance location and q.
ANGULAR MOMENTUM DIFFUSION EQUATION-1

1. General Form of angular rotation rate Ω response to torque density τ

$$\frac{\partial}{\partial t} \left(M n R^2 \Omega \right) = \nabla \cdot \left\{ n M R^2 \chi_m \nabla \Omega \right\} + \tau$$

2. Steady-state axisymmetric version

$$\frac{1}{V'} \frac{\partial}{\partial \psi} \left\{ V' \left\langle n M R^2 \chi_m \left(\nabla \psi \right)^2 \right\rangle \frac{\partial \Omega}{\partial \psi} \right\} = -\langle \tau \rangle$$

$$V' = \oint \frac{d\ell}{\nabla \psi} = \frac{\partial V}{\partial \psi}$$

and $<>$ denotes magnetic surface average

3. $\langle \tau \rangle$ is torque density on bulk plasma and has two sources:

- $j_r B_\theta$ torque arising from radial currents which neutralize energetic particle displacements

- Collisional Angular momentum transfer from energetic particles.
4. First integral of angular momentum equation

\[V' \left\langle n \, M \, R^2 \chi_M \left(\nabla \psi \right)^2 \right\rangle \frac{\partial \Omega}{\partial \psi} = -\int_0^\psi \left\langle \tau \right\rangle V' \, d\psi = T(\psi) \]

- \(T(\psi) = \) torque exerted inside \(\psi \)-surface
- No net torque condition: \(T(\psi_{\text{max}}) = 0 \)

5. Apply no-slip boundary condition at surface

- Field lines outside separatrix line-tied to vessel; toroidal rotation not permitted

6. Torque proportional to rate of creation of energetic particles \(\dot{N} \) and angular momentum transferred per particle.

\[\left\langle \tau \right\rangle \propto \dot{N} \]
ANGULAR MOMENTUM DIFFUSION EQUATION-3

7. Angular rotation rate (use toroidal flux Φ as independent variable)

$$\Omega(\Phi) = \int_\Phi^{\Phi_{\text{max}}} \frac{d\Phi}{q V} \frac{T(\Phi)}{n M R^2 \chi_M (\nabla \psi)^2}$$

8. Conclude:

For regions of separated positive and negative torque density, $T(\Phi)$ is non-zero and toroidal rotation can develop, even though the total torque $T(\Phi_{\text{max}})=0$
ION-CYCLOTRON HEATING MODEL

1. The ion-cyclotron heating process changes a particle’s perpendicular energy, while leaving v_\parallel and the canonical angular momentum unchanged.

 • No net angular momentum is introduced

2. Our ICRF model replaces cold particles by energetic particles constrained to have an equal number of co- and counter velocity particles.

 • Particles are created on the same flux surface on the midplane

 • Mimics ICRF heating for particles whose orbit is tangent to the resonant surface at the midplane where the fast wave intensity is high.

 • Pitch at creation is fixed to be low: $v_\parallel/v = (0.25 - 0.40)$

3. Energetic particles will spatially diffuse via banana diffusion and will collisionally transfer angular momentum to the bulk plasma.

 • ORBIT code follows these processes via a Monte Carlo approach.
1. ORBIT code has been developed to follow energetic particle orbits in toroidal confinement geometries of arbitrary cross section.

2. Hamiltonian formalism developed

 • Rigorous Hamiltonian form found:

\[
\frac{dP_\zeta}{dt} = - \frac{\partial H}{\partial \zeta} \quad \frac{d\zeta}{dt} = \frac{\partial H}{\partial P_\zeta} \\
\frac{dP_\theta}{dt} = - \frac{\partial H}{\partial \theta} \quad \frac{d\theta}{dt} = \frac{\partial H}{\partial P_\theta}
\]

4. Collision model: Energetic proton ion-ion collisions with cold deuterons.

\[
\frac{d\langle \theta^2 \rangle}{dt} = v_o \left(\frac{E_o}{E} \right)^{3/2} \quad \frac{1}{E} \frac{dE}{dt} = - v_o \left(\frac{E_o}{E} \right)^{3/2} \frac{M_{\text{proton}}}{M_{\text{deuteron}}}
\]

\[
v_o = \left(\frac{2^{3/2} \pi n e^4 (n\Lambda)}{(M_p)^{1/2} E_o^{3/2}} \right)
\]
ORBIT CODE MODIFICATIONS

• Plasma divided into 5×10^4 bins in toroidal flux (magnetic surface label)

• For each time step, momentum transfer from particles to plasma through pitch angle scattering and drag recorded in each bin.

• Final particle momentum and density recorded in each bin

• Integrals over toroidal flux (bins) needed for angular rotation performed

• Angular momentum check accurate to 1 part in 5000.
NONDIMENSIONAL CENTRAL ROTATION RATE-1

1. Let Φ_o denote the toroidal flux value where energetic particles of energy E are introduced at a rate \dot{N}.

2. Let $v = \left(2E/M\right)^{1/2} \left(\Omega_a R_a\right)^{-1}$ denote a nondimensional particle speed.

3. ORBIT computes $F(\Phi) =$ fraction of particles ending up inside flux surface Φ and the integral T_1 of the $jr \times B_\theta$ torque.

$$T_1(\Phi) = \frac{1}{v} \int_0^\Phi \frac{d\Phi'}{q} G(\Phi')$$

$$G(\Phi) = \begin{cases} F(\Phi) & \Phi \leq \Phi_o \\ F(\Phi) - 1 & \Phi \geq \Phi_o \end{cases}$$

4. ORBIT also calculates $v T_2(\Phi) =$ mechanical angular momentum deposited inside Φ.

5. Standard circular tokamak formulas, an assumed constant momentum diffusivity $\chi_M = a^2/6 \tau_M$, and $\dot{N} E \tau_E = P \tau_E = W$ are employed to calculate the central rotation frequency.
6. On-axis rotation rate is expressed in terms of the nondimensional rotation rate I^*

$$\frac{\Omega(0)}{N} = v^2 I^*$$

$$I^* = \frac{1}{v} \int_{0}^{\Phi_{\text{max}}} \frac{d\Phi}{\Phi} T$$

$$T = T_1 + T_2$$

$$v = \left(\frac{2E}{M}\right)^{1/2} \left(R_a \omega_{c,a}\right)^{-1}$$

7. Analytic considerations motivate the introduction of v so that I^* is insensitive to physics parameters
1. Select baseline initial particle values used in computing I^* to be representative of Alcator C-Mod.

 - $E=48$ keV, pitch = 0.25, rho = 0.165, low-field midplane, and $N=2000$.

 Result:

 $$I^* = 22.5$$

2. In physical variables the rotation rate is

 $$\Omega(0) = \left\{ \frac{6}{e B_a R_a^3 a^2 \bar{n} (2\pi)^2} \frac{\tau_M}{\tau_E} \right\} I^*$$

 For the shot on sheet 4, this gives $v_{\text{tor}} = \Omega(0) R_a = 7 \cdot 10^4$ m/s, in good accord with the reported value. Results insensitive to E, pitch, and N.
INITIAL ORBITS

1. Initial orbits are characteristic of orbits near the magnetic axis
• Rotation Profile is peaked.
SENSIVITY STUDIES

• How much does the central rotation change as E, rho, pitch, q-profile, and initial surface (ICRF resonance surface) vary? Results expressed as $I^*.$

<table>
<thead>
<tr>
<th>Run</th>
<th>Objective (N=500)</th>
<th>I^*</th>
<th>rho</th>
<th>E (keV)</th>
<th>pitch</th>
<th>q_{max}</th>
<th>resonance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baseline (N=2000)</td>
<td>22.5</td>
<td>0.165</td>
<td>48</td>
<td>0.25</td>
<td>4.0</td>
<td>LFS</td>
</tr>
<tr>
<td>1.1</td>
<td>Baseline (N=200)</td>
<td>24.9</td>
<td>0.165</td>
<td>48</td>
<td>0.25</td>
<td>4.0</td>
<td>LFS</td>
</tr>
<tr>
<td>2</td>
<td>Pitch variation</td>
<td>28.3</td>
<td>0.165</td>
<td>48</td>
<td>0.35</td>
<td>4.0</td>
<td>LFS</td>
</tr>
<tr>
<td>3</td>
<td>Energy dependence</td>
<td>24.6</td>
<td>0.165</td>
<td>24</td>
<td>0.34</td>
<td>4.0</td>
<td>LFS</td>
</tr>
<tr>
<td>4</td>
<td>HFS vs LFS (run 1)</td>
<td>-18.6</td>
<td>0.165</td>
<td>48</td>
<td>0.25</td>
<td>4.0</td>
<td>HFS</td>
</tr>
<tr>
<td>5</td>
<td>q_{max}</td>
<td>17.5</td>
<td>0.165</td>
<td>48</td>
<td>0.25</td>
<td>8.0</td>
<td>LFS</td>
</tr>
<tr>
<td>6</td>
<td>initial rho</td>
<td>13.5</td>
<td>0.34</td>
<td>48</td>
<td>0.5</td>
<td>4.0</td>
<td>LFS</td>
</tr>
<tr>
<td>7</td>
<td>initial rho</td>
<td>19.3</td>
<td>0.69</td>
<td>48</td>
<td>0.64</td>
<td>4.0</td>
<td>LFS</td>
</tr>
<tr>
<td>8</td>
<td>Banana vs Circulating (run 6)</td>
<td>11.4</td>
<td>0.34</td>
<td>48</td>
<td>0.32</td>
<td>4.0</td>
<td>LFS</td>
</tr>
<tr>
<td>9</td>
<td>HFS vs LFS (run 7)</td>
<td>-22</td>
<td>0.69</td>
<td>48</td>
<td>0.64</td>
<td>4.0</td>
<td>HFS</td>
</tr>
<tr>
<td>10</td>
<td>On axis</td>
<td>7.3</td>
<td>0.0</td>
<td>48</td>
<td>0.35</td>
<td>4.0</td>
<td>On-axis</td>
</tr>
<tr>
<td>11</td>
<td>On axis - pitch</td>
<td>-1.9</td>
<td>0.0</td>
<td>48</td>
<td>0.25</td>
<td>4.0</td>
<td>On-axis</td>
</tr>
</tbody>
</table>
As resonance layer is moved outward, rotation profile broadens and is lower in magnitude than baseline case.
SUMMARY - 1

1. Separated regions of positive and negative torque density can generate central rotation

 • General property of a diffusion equation

2. ICRF generates two types of torque density on bulk plasma which are comparable in magnitude and integrate to zero net torque

 • $j_r \times B_\theta$ and mechanical angular momentum transfer by collisions

3. ORBIT code follows individual particles and computes the torque densities

 • ICRF model (initial condition for ORBIT) replaces a cold particle by an energetic particle in the mid-plane.

 • Equal numbers of co- and counter energetic particles assure not net momentum injection. Angular momentum check to $2 \cdot 10^{-4}$ level.
4. Central rotation arises

- Co-current sense, magnitude, and scaling in accord with Alcator C-Mod

 \[v_{\exp}(0) = 10.0 \cdot 10^4 \text{ m/s} \quad v_{\text{model}}(0) = 7 \cdot 10^4 \text{ m/s} \]

- Insensitive to particle energy, pitch, \(q_{\text{max}} \), \(N \), and initial \(\rho \).

- High-field-side initial \(\rho \) gives counter-current rotation.

5. Summary formula

\[
v_{\text{tor}}(0) = \left\{ \frac{6 \cdot W}{e \cdot B_a \cdot R_a^2 \cdot a^2 \cdot n \cdot (2\pi)^2 \left(\frac{\tau_M}{\tau_E} \right)} \right\} I^* \]

\[I^* = 10-20 \]
CONCLUSIONS

- A mechanism to create central rotation in tokamaks with ICRF heating has been identified.

- Toroidal velocity scales diamagnetically
 - Magnitude and sense in accord with C-Mod data.

- Precise treatment of angular momentum needed and provided by ORBIT code
CONCLUSIONS

• A mechanism to create central rotation in tokamaks with ICRF heating has been identified.

• Toroidal velocity scales diamagnetically
 - Magnitude and sense in accord with C-Mod data.

• Precise treatment of angular momentum needed and provided by ORBIT code

See Poster RP1.72 Thursday Afternoon
(Also, poster RP1.71 - Y. Omelchenkov)