Progress Toward Long-Pulse High-Performance Discharges in the DIII–D Tokamak

by T.C. Luce presented by P.A. Politzer in collaboration with M.E. Austin,* J.R. Ferron, A.M. Garofalo,[†] C.M. Greenfield, A.W. Hyatt, L.L. Lao, E.A. Lazarus,[‡] M.A. Makowski,[∆] M. Murakami,[‡] R.I. Pinsker, B.W. Rice,[∆] E.J. Strait, M.R. Wade[‡], J.G. Watkins[◊]

> *University of Texas [†]Columbia University [‡]Oak Ridge National Laboratory [△]Lawrence Livermore National Laboratory [◊]Sandia National Laboratory

Presented at the American Physical Society Division of Plasma Physics Meeting Seattle, Washington

November 15–19, 1999

Abstract Submitted for the DPP99 Meeting of The American Physical Society

Sorting Category: 5.1.1.2 (Experimental)

Progress Toward Long-Pulse High Performance Discharges in the DIII-D Tokamak¹ T.C. LUCE, P.A. POLITZER, J.R. FERRON, C.M. GREENFIELD, E.J. STRAIT, R.I. PINSKER, L.L. LAO, General Atomics, M.R. WADE, M. MURAKAMI, ORNL, B.W. RICE, LLNL, A.M. GAROFALO, Columbia U., M.E. AUSTIN, U.Texas — Discharges with high normalized performance ($\beta_{\rm N} \lesssim 4, H_{89}\beta_{\rm N} \lesssim 10$) have been sustained for up to 2 s with an ELMing H-mode edge. The performance was limited by resistive wall modes, not neoclassical tearing modes. The pressure is well above the calculated no-wall limit and $\beta_{\rm N} > 4\ell_{\rm i}$ for the entire high performance phase. Measurements of the internal loop voltage show that about 75% of the current is supplied non-inductively and greater than 50% of the total current is calculated to be bootstrap current. The q profile is flat, as is the calculated bootstrap current profile, due to the absence of any sharp internal transport barrier. The remaining inductive current is localized around the minor radius $\rho = 0.5$ which agrees with the design modeling. Density control is necessary to apply the ECCD in these discharges, and preliminary experiments with the cryopump have reduced the density by $\sim 20\%$.

¹Supported by U.S. DOE Contracts DE-AC03-99ER54463, DE-AC05-96OR22464, and W-7405-ENG-48, and Grants DE-FG02-89ER53297 and DE-FG03-97ER54415.

X

Prefer Oral Session Prefer Poster Session T.C. Luce luce@gav.gat.com General Atomics

Special instructions: DIII-D Contributed Oral Session, immediately following SL Allen

Date printed: July 20, 1999

Electronic form version 1.4

- A steady-state high-gain fusion system requires
 - Maximized bootstrap current \Rightarrow higher q_{min}, q95
 - Maximized wall loading \Rightarrow operation above conventional ELMing H-mode limits ($\beta_N \sim 2.5$, H₈₉ ~2.0)
- In the near-term the goal is to demonstrate simultaneously in DIII–D
 - − Normalized performance twice that of conventional ELMing H–mode ($β_N$ H₈₉ ≥ 10)
 - Fully non-inductive current sustainment with >50% bootstrap current

β_{N} H₈₉ ~9 SUSTAINED FOR ~16 τ_{F} , $1\tau_{R}$

Talk Outline

- Successful transition to ELMing phase
- Limits to steady performance magnitude and duration
- **Necessary additions** for fully non-inductive operation

BETA SATURATION IN THE INITIAL PHASE IS DUE TO BURSTING HIGH-FREQUENCY MHD

BETA IS LIMITED IN MAGNITUDE AND DURATION BY RESISTIVE WALL MODES

DENSITY CONTROL AND NON-INDUCTIVE CURRENT SUSTAINMENT ARE REQUIRED TO ACHIEVE STATIONARY HIGH PERFORMANCE

NON-INDUCTIVE CURRENT NEEDS TO BE SUPPLIED AT THE HALF RADIUS FOR STEADY STATE

- Density control is required to realize the goal of full non-inductive current sustainment. Preliminary experiments this year demonstrated reduction of the line-averaged density ~20%. The new pump in the upper divertor is expected to enhance the density control.
- The instabilities driven by fast ions and the overdrive of the central current by NBCD motivate reduction of the neutral beam power and voltage as much as possible.
- Upgrade of the ECH/ECCD system combined with density control should allow stationary, fully non-inductive, high performance operation.

BETA SATURATION IN THE INITIAL PHASE IS COINCIDENT WITH THE ONSET OF HIGH-n, HIGH-FREQUENCY MAGNETIC FLUCTUATIONS

STEADY-STATE WITH β_N H > 10 CAN BE SUSTAINED BY < 2.5 MW EC POWER

