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ABSTRACT

A model based, multivariable shape controller has been
designed and implemented in the DIII-D plasma control system
(PCS).  Here we describe the modeling approach, controller
design, simulation, and the first successful experimental test of
the controller on DIII-D. Comprehensive models of all major
electromagnetic components have been developed, including a
physics based, linearized plasma response model. A rigorous
model based design methodology is used to develop a
multiple-input-multiple-output (MIMO) control algorithm which is
expected to improve static and dynamic shape and position
response and provide a framework for development of
advanced shape and current profile controllers. The models
are incorporated in a simulator which allows validation of the
control algorithm within the PCS while running in closed loop
with the simulator. In the first test on DIII-D the controller
provided stable operation and good steady state shape control
throughout the primary part of the plasma discharge.

                                                
* Work supported by  U.S. Department of Energy under Contract No.

DE-AC03-89ER51114.



OVERVIEW

● A model based, Multi-Input-Multi-Output (MIMO) shape
controller was designed and implemented on DIII-D.

● Controller design is based on a linearized plant model of
DIII-D consisting of poloidal field coils, resistive
elements and plasma.

● The model based design procedure produces a state
space controller with fully populated gain matrix
between the isoflux control points and F-coils. (Previous
DIII-D controllers use ad hoc design methods and a PID
controller with a sparsely populated gain matrix.)

● The design method allows tradeoff between conflicting
requirements. For the first MIMO implementation, X-point
control accuracy was emphasized over shape accuracy.
The implemented controller design was robustly stable.

● A simulator of the entire DIII-D poloidal field system
including the power supplies was developed and used in
closed loop with the DIII-D plasma control system (PCS)
to validate the controller design.

● The controller was implemented within the PCS and
tested on several DIII-D discharges with good success.



THE DIII-D TOKAMAK
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● Ohmic heating coil (E-coil) drives current and heats
plasma through transformer action (E-coil is primary,
plasma is secondary).

●  Poloidal field coils (F-coils) F1A...F9B control shape and
position of plasma.

● Plasma shape is defined by last closed flux surface or
separatrix.

● Plasma shape/position is diagnosed using measured flux
at flux loops and field at magnetic field probes.

● Plasma is open-loop vertically unstable.



EXISTING DIII-D ISOFLUX CONTROL
REGULATES  PLASMA SHAPE

● Real time EFIT (Equilibrium FITing code) calculates flux
and fields very accurately near plasma boundary.

● Controlled parameters are:

- X-Point R and Z positions

- Flux at boundary control points (isoflux points)

● Flux at each control point is regulated to match the flux
at the X-point.
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MOTIVATION:
MODEL BASED MIMO DESIGN PROVIDES SIGNIFICANT
ADVANTAGES OVER CONVENTIONAL DIII-D CONTROL

● MIMO model-based control exploits knowledge of
response of all output control variables to all input
actuators. This leads to better control.

- Each coil influences all control variables; the MIMO
controller design incorporates these influences.

- Dynamic characteristics of the plasma are included.

● MIMO controllers provide explicit techniques for
balancing conflicting operational control requirements:

- System limitations, such as coil voltage/current limits,
are designed into the controller.

- Relative importance of various control parameters is
designed into the controller (e.g. gap vs. X-point
control accuracy).

● Development method provides robust stability. Reduces
sensitivity to variation in plasma parameters.

● Provides systematic plasma shape control design
method for new plasma configurations or new devices.

● Controller development and primary testing can be done
off-line, without the use of experimental time.  This
reduces new shape development time.

● Integrated (MIMO) control is the only practical method
for simultaneous control of strongly coupled internal
profiles and plasma shape.



EXISTING DIII-D SHAPE CONTROL ESSENTIALLY USES
A SINGLE INPUT -  SINGLE OUTPUT PID CONTROLLER
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● Gain matrix between isoflux control point errors (e) and
PF coil commands is very sparse and values are
determined using ad hoc methods. Proportional Integral
Derivative (PID) controller is governed by:

Command k e k
de
dt

k e dtp e i= + + ∫

Isoflux error at control point, segment number: Errors
Coil 1 2 3 4 5 6 7 8 9 10 11 12 13 Rx Zx Iret

F1A 10
F2A 16
F3A
F4A -4 -4 -10
F5A -4 -10 -4
F6A 16 4
F7A 8
F8A -10 -4 -4
F9A
F1B 10
F2B 16
F3B 10
F4B 10 -10
F5B 10 -10
F6B 16 4
F7B 2 0.2
F8B 10 -10
F9B -10 -10



MIMO CONTROL CONNECTS ALL INPUTS TO ALL OUTPUTS
USING A DYNAMIC STATE SPACE CONTROLLER
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● State space MIMO controller description
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dt
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δ δ
where:

x is the state space vector which evolves in time
δu is the input vector consisting of:

- 13 isoflux control point errors
- Br & Bz  X-point errors
- 18 coil currents
- Plasma centroid vertical position error

δv is output demand voltage vector
AC ... DC are controller state space matrices

established using the NCF technique



NCF TECHNIQUE PROVIDES A SYSTEMATIC
CONTROLLER DESIGN METHOD

● Normalization Coprime Factorization (NCF) design
technique is used in the controller development.

● DIII-D plant consists of PF coils, resistive elements &
linear plasma. (See Poster JP1.34)
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● User adjusted weights WL and WR are used to shape the
desired open loop response of the plant. Automated
design tools generate a robustly stable controller,
maintaining the specified open loop response.

● Final controller is constructed from generated controller
and user specified weights.
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NCF MIMO DESIGN ENTAILS GENERATION OF
INPUT/OUTPUT WEIGHT MATRICES WL & WR

DIII-D Plant
See JP1.34
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● Input / output matrices WL & WR used in the MIMO
design are diagonal with each diagonal represented as a
filter with, at most, single pole characteristics:

W s k
s

s

i

j( ) ;=
+( )
+( )

α
β α β

   Where :  
i = 0, 1;  j =  0, 1       

k, ,   =  constants
 

● Filter characteristics (i, j) and constants (k, α & β) are
adjusted to achieve desired open loop response
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CONTROLLER IS TESTED IN THE PCS USING
A NEWLY DEVELOPED DIII-D  SIMULATOR

● PCS normally connects to the DIII-D tokamak for real
time control of the plant

● Optionally, the PCS can connect to a software based test
module.

- The test module simulates the DIII-D plant and
includes: 1) DC power supplies, 2) fast switched power
supplies, 3) configurational switches, 4) field shaping
& ohmic heating coils, 5) passive elements, 6) plasma
dynamics, 7) data figures, 8)magnetic diagnostics,
9) A/D & D/A signal converters.

- This allows testing of the controller as implemented in
the PCS without using experimental time.
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SIMULATOR MODELS THE COMPLEX AND FLEXIBLE
CIRCUIT USED IN THE DIII-D TOKAMAK

● Simulator circuit is dynamically configured to emulate
the DIII-D circuit for a particular shot. A typical DIII-D
poloidal field coil circuit is shown below:
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● The simulator model contains highly nonlinear power
supplies (choppers), a large, complex but linear set of
circuit equations for the shaping coil and passive
element currents (Is) and a linearized plasma response
model: (SEE POSTER JP1.34)
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DIII-D SIMULATOR

● A model is dynamically built for a particular DIII-D
configuration in the MATLAB/SIMULINK  environment
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● The model is tested & validated by injecting shot data
and comparing model response with actual DIII-D data.

● A SIMulation SERVER (SIMSERVER) is built from the
validated model and compiled into an executable.

● SIMSERVER operates in series with the real time PCS
allowing testing of newly developed control algorithms.



SIMULATOR MODEL ACCURATELY MODELS
THE DIII-D PLANT

● Predictions of the coil currents and diagnostic output are
typically within 10% of the actual DIII-D data over a .5-1s
time period. Dynamic response, which is important for
controller design, is accurately simulated.
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MIMO CONTROLS DIII-D SHAPE

● Lower single null MIMO controller was implemented
within the PCS, and tested on DIII-D.

● It was successfully used to control 14 discharges.
Over half of these were controlled for the entire
discharge.
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MIMO STEADY STATE CONTROL IS EXCELLENT

● The MIMO controller operating on the DIII-D experiment
achieves approximately a 1 cm shape accuracy in steady
state. This is approximately a 2% error based on minor
radius scaling.
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FOR MODEST RAMP RATES, DYNAMIC CONTROL
OF THE X-POINT IS EXCELLENT

● X-point control was emphasized in the MIMO controller
design (higher weights). This produced excellent control
of the X-point location (I).

● Other shape parameters are less accurately controlled (II).
High frequency response will improve with improved
models of the vertical control loop (III).
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CONTROL QUALITY DEPENDS ON li

● Controller performance is best at high li where the
controller was optimized. li strongly influences vertical
growth rate which, in turn, strongly affects controller
design and response.

● Scheduling of controllers can be used to produce
similarly good results over a wide range of βp & lI.
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MIMO CONTROLLER LINEARIZED ABOUT SINGLE POINT CONTROLS ENTIRE DISCHARGE 
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SIMULATOR ACCURATELY REPRODUCES
RESULTS OF THE MIMO EXPERIMENT

● Experimental results from the MIMO experiment are
accurately reproduced by the simulator, except at the
end of the discharge where a plasma disruption occurs.
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● A comprehensive, model based controller design
methodology has been developed for DIII-D control.

● A model based, multivariable, dynamic shape (MIMO)
controller has been developed, implemented and tested
on the DIII-D tokamak.

● A comprehensive simulator of the DIII-D plant has been
developed.  This simulator operates in closed loop with
the PCS and allows development and testing of control
algorithms in the PCS without requiring experimental
machine time.

● Experimental results of the MIMO controller show robust
control of the plasma shape over the entire discharge:

- Steady state shape control of ~ 1cm was achieved.

- Dynamic control of X-point is good due to  emphasis
placed on this parameter in MIMO design. Other
boundary shape parameters were less controlled.

- Internal plasma parameters impact quality of control.

- Stable operation was achieved over the entire discharge.

● Initial results are encouraging. Future development will
allow integrated shape and current profile controllers to
be designed and tested off-line based on rigorous model
based procedures. Methodology provides a framework
for development of controllers for future fusion devices.


