### The Relationship of Locked Modes to Edge Current Density

E. A. Lazarus, M.S. Chu, T.H. Osborne, R.J. LaHaye, B.W. Rice

Available in PDF form at: ftp://fusion.gat.com/pub/lazarus/





#### Abstract Submitted for the DPP99 Meeting of The American Physical Society

Sorting Category: 5.1.1.2 (Experimental)

The Relationship of Locked Modes to Edge Current in DIII-D<sup>1</sup> E.A. LAZARUS, Oak Ridge National Laboratory, M.S. CHU, T.H. OSBORNE, R.J. LA HAYE, General Atomics, B.W. RICE, Lawrence Livermore National Laboratory — Locked modes are a familiar problem in low density discharges  $[\bar{n}_e(R_0/B_t)q^* \approx 8]$  for elongated plasmas. In a series of limiter discharges we found the following phenomenology for a particular series. Discharges which were maintained at approximately constant shape during the  $I_{\rm p}$  ramp encountered a locked mode at  $q_{\ell} \approx 3$  leading to a disruptive termination with a probability of approximately 80%. Discharges for which  $\kappa$  was initially increased to a larger value than the desired value of 1.6 and later reduced follow a different trajectory in that  $q_{\ell} = 3$  is not reached in the  $I_{\rm p}$  ramp, but in the flattop where  $\kappa$  is reduced to its final value. These discharges avoided the locked mode with 100% reliability. The current density is measured with a motional Stark effect diagnostic. At the time q = 3 is reached, the edge current density is somewhat higher in the former cases. Experimental results and resistive stability analysis will be presented.

<sup>1</sup>Work supported by U.S. DOE Contracts DE-AC05-96OR22464, DE-AC03-99ER54463, and W-7405-ENG-48.



Prefer Oral Session Prefer Poster Session E.A. Lazarus lazarus@gav.gat.com Oak Ridge National Laboratory

Special instructions: DIII-D Poster Session 1, immediately following J Bialek

Date printed: July 16, 1999

Electronic form version 1.4

The Relationship of Locked Modes to Edge Current in DIII-D E.A. Lazarus, Oak Ridge National Laboratory M.S. Chu, General Atomics T.H. Osborne, General Atomics R.J. LaHaye, General Atomics B.W. Rice, Lawrence Livermore National Laboratory

Locked modes are a familiar problem in low density discharges  $[\bar{n}_e(R_0/B_t)q^* \approx 80]$  for elongated plasmas. In a series of limiter discharges we found the following phenomenology for a particular series. Discharges which were maintained at approximately constant shape during the Ip ramp encountered a locked mode at  $q_\ell \approx$  3 leading to a disruptive termination with a probability of approximately 80%. Discharges for which  $\kappa$  was initially increased to a larger value than the desired value of **1.6** and later reduced follow a different trajectory in that  $q_{\ell} = 3$ is not reached in the  $I_p$  ramp, but in the flattop where  $\kappa$  is reduced to its final value. These discharges avoided the locked mode with 100% reliability. The current density is measured with a motional Stark effect diagnostic. At the time q = 3is reached, the edge current density is somewhat higher in the former cases. Experimental results and resistive stability analysis will be presented.

• There are several rules-of-thumb used to indicate a threat of locked modes:

1. DITE < 9, where DITE = 
$$\frac{\overline{n_e}}{B_i/R} q_*$$
 and  
 $q_* = \frac{a^2 B_i}{\frac{\mu_0}{2\pi} R I_p} \frac{1+\kappa^2}{2} 1+\epsilon^2 1+\frac{\left(\beta_p+\ell_i/2\right)}{2}$   
 $\left[1.24-0.54\kappa+0.13\delta+0.3(\kappa^2+\delta^2)\right]$   
2. LoNe < 72, where LoNe = (DITE)•q\*  
3. "ne/ip" > 5, is the vertical line-integrated density  
("DENV2") divided by plasma current.

- Attempts to replace  $q_*$  with  $q_{\psi}$  seem to destroy the valididity of these empirical criteria.





- While the LoNe can be violated, the plasma will not accept heating and locks at the first attempt to raise  $\beta$ .
- Even ignoring these exceptions, it seems to me stunning how frequently locked mode difficulties correlate with LoNe just touching 72 (from above) during plasma rampup.
- The goal of the experiment was to produce low  $\beta$  plasmas which would exhibit a classical tearing mode at low q (<2.5) but would have low enough density for ECE to be operable. It turned out that the plasma was remarkably robust for q > 2.25 and tearing modes were difficult to generate with impurity and/or D<sub>2</sub> puffing.
- While the latter type were 100% successful in passing through q=3, an error (such as mistiming the κ evolution would reproduce the locked mode behavior of 97741 discussed below.





#### **Locked Mode Criteria**



- In this discussion we will focus on three plasmas:
  - 1. <u>97741</u> is in a category of low-density discharges where 80% (8 of 10) developed a locked mode and disrupted – all at about the same time, corresponding to  $q_1 \ge 3$ .
  - 2. <u>97727</u> is one of the two discharges with this same evolution, which did not disrupt
  - 3. <u>97743</u> is a different evolution of plasma shape which delays passing through q=3 until  $I_p$  is in the flat top.
- I hope to preserve this color-coding – no guarantees
- First we examine the evolution of the latter two discharges.









SHAPE EVOLUTION FOR 97743 AND 97727

- There is little difference in the  $dB_{\theta}/dT$  signals prior to or even beyond the onset of the locked mode as evidenced in the figure below
- The next figure shows the typical time evolution of the plasmas encountering LM disruptions, along with the counter example, 97727.
- All the disruptions of this type begin with a positive spike in  $I_p$ , indicating a peaking of the current profile.
- The analysis of saddle coils (toroidal and poloidal arrays) for 97741 (3<sup>rd</sup> figure below) shows an m/n=3/1 mode beginning to grow at about 1462 ms and its rotation is completely stopped at 1680 ms
- A careful examination of the saddle coil signals for 97727 and 97743 shows no evidence whatsoever of an external perturbation as the plasma passes through  $q_L=3$ .







| 10<br>5<br>0<br>-5<br>-10          |                    | mpi66m(                                 | 067d 97741              | dB /dt (T/s                                    | 5)                                                   |                                           |
|------------------------------------|--------------------|-----------------------------------------|-------------------------|------------------------------------------------|------------------------------------------------------|-------------------------------------------|
| 5<br>0<br>-5<br>-10                |                    | mpi66m0                                 | 67d 97727               |                                                |                                                      |                                           |
| 5<br>0<br>-5<br>-10                |                    | mpi66m06                                | 7d 97743                |                                                | , 14 19 14 40 44 14 14 14 14 14 14 14 14 14 14 14 14 | ulan kanalogi<br>V <sup>ato</sup> n Alayk |
| 5.8<br>4.5<br>3.2                  |                    | efitql<br><mark>efitql</mark><br>efitql | 97741<br>97727<br>97743 |                                                |                                                      |                                           |
| 2.0<br>1.4<br>1.2<br>1.0<br>0.8    |                    | efitli<br><mark>efitli</mark><br>efitli | 97741<br>97727<br>97743 |                                                |                                                      | -                                         |
| 0.6<br>0.0625<br>0.0250<br>-0.0125 | 20 G peak<br>value | pr13<br>pr13<br>pr13                    | 97741<br>97727<br>97743 | midplane saddle coill –<br>difference signal – |                                                      |                                           |
| -0.05<br>15                        | 00 1650 180        | 00                                      | 1950                    | 2100                                           | 2250                                                 | ]<br>240                                  |

smoothing 2 points baseline 100.0 msec contour limits -19.4 19.3



shot 97741

# ANALYSIS OF CURRENT PROFILE

- The 30 Left beam is pulsed (10 ms on / 90 off) to obtain MSE and CER data. This is a small enough perturbation that it is not seen in the diamagnetic flux.  $\beta_p$  is  $\approx$  0.09 for these plasmas.
- This limits our profile analysis to these small windows. For the particular shots to be compared: 97741 and 97743 the times are respectively 35 ms prior to the onset of the locked mode and 35 ms prior to reaching  $q_L = 3$ .
- The analysis is based on n<sub>e</sub> (Thomson), T<sub>e</sub> (Thomson and ECE, T<sub>1</sub> (CER), Z<sub>eff</sub> (Visible Bremstrahlung), B<sub>z</sub> (MSE) and a large array of external magnetic diagnostics. (The MSE data and fit are shown below.)
- We have taken care to treat the analysis identically for each shot, reducing the possible effects of systematic errors on the resulting edge current density.
- We also analyzed 97727, which should look very similar to 97741.







#### Edge Current Density Gradient is Reduced For the Plasmas Having Greater Immunity to Locked Modes



## **Discussion and Conclusions**

- We have observed a marked difference in the probablility of developing a locked mode in the neighborhood  $q_{L} \ge 3$  depending on the plasma shape trajectory relative to the  $I_{p}$  ramp.
- If the safety factor evolves through q=3 in the I<sub>p</sub> flattop, allowing more time for current to soak in, the probability (in Ohmic plasmas) decreases to near zero. Of course, this is done infrequently as the Ohmic flux consumption is increased.
- A kinetic analysis of the equilibrium shows that this slower evolution results in a lower ∇J<sub>\\</sub> near the boundary consistent with expectations based on stability theory.
- Stability analysis is incomplete at this time.
- Such discharges seemed so bulletproof at q<2.5 that a small effort was made to use further vertical compression to get q<2. It was like hitting a brick wall – the lowest q<sub>L</sub> we could reach was 2.12



