Dependence of ELM energy distribution in double-null discharges on up/down magnetic balance in DIII-D 1, C.J. LASNIER, Lawrence Livermore National Laboratory A.W. LEONARD, T.W. PETRIE, General Atomics J.G. WATKINS, Sandia National Laboratories, Albuquerque

In this study we show the effect on ELM divertor heat flux of changing continuously from a lower single null to an upper single null discharge. The up/down split of ELM deposited energy on the divertor plates is well controlled by adjusting the relative locations of the flux surfaces on which the upper and lower magnetic nulls lie. The distance between these surfaces at the outer midplane (D_{rsep}) is changed to adjust the magnetic balance. (For a magnetically balanced discharge D_{rsep}=0.) We examine the effect of adjusting D_{rsep} on the location of the ELM deposited energy profiles in both divertors. The scale length of D_{rsep} changes which affect the heat flux is greater than the heat flux scrape-off width at the outer midplane.

¹Work supported by U.S. Department of Energy under Contract Nos. DE-AC03-89ER51114, W-7405-ENG-48, and DE-AC04-94AL85000.

Definition of Magnetic balance

• DRSEP = radial distance at the outer midplane between the flux surfaces connected to the upper and lower X-points

- Plasma parameters:
 - $-I_{p} = 1.4 \text{ MA}$
 - $-B_{\rm T} = 2.0 {\rm T}$
 - Ion ∇B drift downward
 - $n_e \cong 5 \times 10^{13} \text{ m}^{-3} \text{ (varying)}$

IRTV sightlines

Total deposited energy

Magnetic balance controls ELM energy deposition similar to attached Q_{peak} , wider scale length

ELMs have wider effective scrape-off length

- ELM energy deposition DRSEP scale length: 1.9 cm
- Attached time-averaged heat flux 0.4 cm (Petrie, this meeting paper GO2.11)
- Detached time-averaged heat flux 2.2 cm (Petrie GO2.11)

Up/down balance does not Affect ELM energy distribution as strongly as timeaveraged heat flux

- Upper divertor is similar to time-average.
- Lower divertor is less dominant.
- This is probably not caused by reflections in the upper divertor, due to geometry.
- Upper divertor still shows a hot spot during ELMs on the nose of the upper baffle.

Profiles

Upward bias gave local hot spot

DRSEP = + 2.3 cm (Eup-Elo)/(Eup+Elo) = 0.69 Contrast and brightness expanded for lower divertor image

0)

The 4 cm flux line intersects the upper baffle for DRSEP = -2.2 cm

98727 3000.00

The 2 cm flux line did not clear the baffle for DRSEP = +2.3 cm

97976 3100.00

C. J. Lasnier et al. APS DPP 1999

Changing from lower to upper bias shunts ELM heat near the separatrix

C. J. Lasnier et al. APS DPP 1999

Upper divertor shows ELM heat on baffle

C. J. Lasnier et al. APS DPP 1999

Discussion

- The ELM energy behaves similarly to the peak heat flux when DRSEP is changed.
- ELM deposited energy in the divertors is strongly affected by magnetic balance, but the effective scale length is longer than for time-averaged attached peak heat flux.
- During downward bias, there is still a hot spot on the upper baffle during ELMs.
- The energy deposited near the separatrix in the lower divertor is most strongly affected.