Stability Modeling of DIII-D Discharges with Transport Barriers

L.L. Lao, J.R. Ferron, Y.R. Linliu, M. Murakami,¹ E.J. Strait, T.S. Taylor, and A.D. Turnbull

General Atomics, San Diego, CA, U.S.A. ¹ Oak Ridge National Laboratory, Oak Ridge, TN, U.S.A.

41st Annual APS Division of Plasma Physics Meeting Seattle, Washington November 15 - 19, 1999

Abstract Submitted for the DPP99 Meeting of The American Physical Society

Sorting Category: 5.1.1.2 (Experimental)

Stability Modeling of DIII-D Discharges with Transport Barriers¹ L.L. LAO, J.R. FERRON, Y.R. LIN-LIU, E.J. STRAIT, A.D. TURNBULL, T.S. TAYLOR, General Atomics, M. MU-RAKAMI, Oak Ridge National Laboratory — The stability of DIII-D discharges with transport barriers is systematically studied by modeling the pressure profiles using a hyperbolic tangent representation with various radii, widths, and amplitudes. The q profiles are modeled using a spline representation with varying q(0), q_{\min} , and $\rho_{q_{\min}}$. The equilibria are computed using the EFIT and the TOQ codes based on the parameters from a strongly shaped high triangurality DIII–D long pulse high performance discharge. Stability against the ideal low n = 1 and 2 modes is evaluated using the GATO code with a conducting wall at 1.5 a. The results show that the stability improves with increasing transport barrier width and radius but varies weakly with q(0). When the transport barriers are L-mode like and have narrow widths in the plasma core, the stability is limited by the n = 1 mode. When they are H-mode like and have large widths extending toward the edge, the stability is limited by the n = 2 mode.

¹Work supported by U.S. DOE Contracts DE-AC03-99ER54463 and DE-AC05-96OR22464.

Prefer Oral Session Prefer Poster Session L.L. Lao Lang.Lao@gat.com General Atomics

Special instructions: DIII-D Poster Session 1, immediately following H Takahashi

Date printed: July 19, 1999

Electronic form version 1.4

MOTIVATION

- Strong local pressure gradients are often observed in discharges with internal transport barrier (ITB) which can lead to instability at low beta
- Previous stability modeling studies have been mostly discussed in terms of P(0)/ <P>
- Goals
 - Explore stable path to configurations with both ITB and high normalized beta $\beta_{\rm N}$
 - Check sensitivity of stability limit to variations in q and ITB profiles

OUTLINE / KEY RESULTS

- Stability limit improves with transport barrier width and radius
- Wall stabilization is crucial for ITB with large radius
- Stability limit varies weakly with q(0)
- *n* = 2 modes are more unstable in ITB with large radius and width

APPROACHES

- Ideal stability with a conducting wall
- Simulated equilibria with model q and pressure profiles based on spline and hyperbolic tangent representations
- Simulated equilibria with q and pressure profiles from self-consistent transport simulations

PREVIOUS STABILITY STUDY IS DISCUSSED MOSTLY IN TERMS OF P(0)/ <P>

• $P(\psi) = P_0 (1 - \psi)^m$, $q_{95} = 5.1$, $\rho_{qmin} = 0.65$, $q_{min} = 2.1$ and 1.5

• Vary pressure profile peakedness by varying *m*

HYPERBOLIC TANGENT PROVIDES GOOD PARAMETRIZATION FOR PRESSURE PROFILES WITH TRANSPORT BARRIER

• 3 parameters amplitude, radius, and width

ANALYSIS METHODS

- Equilibrium
 - ToQ, EFIT
 - Up-down symmetric DND based on long pulse high performance shot 95983
 - Pressure profiles modeled using hyperbolic tangent representation with various radii, widths, and amplitudes
 - q profiles modeled using spline representation with various q(0), q_min, and ρ_{qmin}
 - Fixed $q_{95} \sim 5.1$
 - Single transport barrier
- Stability
 - Low *n* modes evaluated using GATO with a conducting wall at 1.5a
 - High *n* ballooning evaluated using BALOO

- ITB radius ρ_{ITB}
 - Fixed shape
 - Fixed q(0), q_{min}, q₉₅, ρ_{qmin} ρ_{ITB}
 - Hyperbolic tangent pressure with fixed half width W_{ITB}
- ITB half width W_{ITB}
 - Fixed shape
 - Fixed q(0), q_{min}, q₉₅, ρ_{qmin} ρ_{ITB}
 - Fixed ρ_{ITB}
- $\rho_{qmin} \rho_{ITB}$
 - Fixed shape
 - Fixed q(0), q_{min} , q_{95}
 - Hyperbolic tangent pressure with fixed half width \textbf{W}_{ITB} , ρ_{ITB}
- q(0), q_{min}

PLASMA SHAPE IS BASED ON A DIII-D LONG PULSE HIGH PERFORMANCE DISCHARGE

- Up-down symmetric with a conducting wall at 1.5a
- q profiles are modeled using spline representations

9

Lao APS 1999

LARGEST PRESSURE GRADIENT IS REDUCED AS TRANSPORT BARRIER WIDTH IS INCREASED AT CONSTANT β

• $P(\psi) = P_0/2 \{ 1 - TANH[(\psi - \psi_{ITB})/W_{ITB}] \} - P_0/2 \{ 1 - TANH[(1 - \psi_{ITB})/W_{ITB}] \}$

INERAL ATOMICS

STABILITY LIMIT IMPROVES WITH INTERNAL TRANSPORT BARRIER WIDTH

- fixed shape DND, $q_{95} = 5.1$, q(0) = 3.2, $q_{min} = 2.2$
- ideal n = 1 with wall at 1.5a, $\psi_{qmin}^{0.5} \psi_{ITB}^{0.5} = 0.05$
- stability improves due to geometric effect, closer to wall, and stronger shear

THE n = 1 UNSTABLE MODE HAS A GLOBAL RADIAL STRUCTURE

- β_{N} = 4.3, W_{ITB} = 0.24, ψ_{ITB} = 0.36, q(0) = 3.2, q_{min} = 2.2, q₉₅ = 5.1, ψ_{qmin} = 0.42
- Computed using GATO with a conducting wall at 1.5a

THE n = 1 UNSTABLE MODE HAS AN INFERNAL MODE STRUCTURE

- β_{N} = 4.3, W_{ITB} = 0.24, ψ_{ITB} = 0.36, q(0) = 3.2, q_{min} = 2.2, q₉₅ = 5.1, ψ_{qmin} = 0.423
- Computed using GATO with a conducting wall at 1.5a

Normalized Poloidal Flux

 Large m = 1, 2 components although no q = 1 and 2 surfaces

STABILITY LIMIT IMPROVES WITH INTERNAL TRANSPORT BARRIER RADIUS

- fixed shape DND, $q_{95} = 5.1$, q(0) = 3.2, $q_{min} = 2.2$
- ideal n = 1 with wall at 1.5a, $\psi_{qmin}^{0.5} \psi_{ITB}^{0.5} = 0.05$
- stability improves mainly due to geometric effects

STABILITY LIMIT IMPROVES WITH INTERNAL TRANSPORT BARRIER RADIUS

- fixed shape DND, $q_{95} = 5.1$, q(0) = 3.2, $q_{min} = 2.2$
- ideal n = 1 with wall at 1.5a, $\psi_{qmin}^{0.5}$ $\psi_{ITB}^{0.5}$ = 0.05
- stability improves due to geometric effect, closer to wall, and stronger shear

PREVIOUS STABILITY STUDY SHOWS THAT WALL STABILIZATION IS CRUCIAL

WALL STABILIZATION IS CRUCIAL FOR STABILITY

- β_{N} = 5.2, W_{ITB} = 0.06, ψ_{ITB} = 0.36, q(0) = 3.2, q_{min} = 2.2, q_{95} = 5.1
- Computed using GATO with a conducting wall at 1.5a

- fixed shape DND, $q_{95} = 5.1$, $q_{min} = 2.2$
- hyperbolic tangent pressure representation
- ideal n = 1, wall at 1.5a

n = 2 MODES ARE MORE UNSTABLE IN ITB WITH LARGE WIDTH

- fixed shape DND, $q_{95} = 5.1$, q(0) = 3.2, $q_{min} = 2.2$
- ideal n = 2, wall at 1.5a
- wall stabilization is less effective against n = 2 modes

SUMMARY

- Hyperbolic tangent function provides an useful representation to systematic study the effects of Internal transport barrier (ITB) width and radius on MHD stability
- Stability limit improves with transport barrier width and radius
- Wall stabilization is crucial for ITB with large radius
- Stability limit varies weakly with q(0)
- n=2 modes are more unstable in ITB with large radius and width
- Future work
 - More sophisticated pressure models, hyperbolic tangent + linear
 - Higher n modes, edge stability
 - Shaping, squareness, outboard bump

