MULTI-DEVICE DIMENSIONLESS SCALING OF NEOCLASSICAL TEARING MODE BETA LIMIT

by R.J. La Haye

in collaboration with R.J. Buttery,^{*} S. Guenter,[†] G.T.A. Huysmans,[‡] and H.R. Wilson^{*}

> *EURATOM/UKAEA Fusion Assoc. Culham Science Center [†]Max Planck Institut fur Plasmaphysik [‡]JET Joint Undertaking, currently at CEA

Presented at the American Physical Society Division of Plasma Physics Meeting Seattle, Washington

November 15-19, 1999

315–99

Abstract Submitted for the DPP99 Meeting of The American Physical Society

Sorting Category: 5.1.1.2 (Experimental)

Multi-Device Dimensionless Scaling of Neoclassical Tearing Mode Beta Limit¹ R.J. LA HAYE, General Atomics, R.J. BUTTERY, H.R. WILSON, Euratom/UKAEA Fusion Association Culham, S. GUENTER, MPI f. Plasmaphysik, G.T.A HUYSMANS, Jet Joint Undertaking (now at CEA, Cadarache) — To extrapolate the neoclassical tearing mode (NTM) beta limit to reactor grade tokamaks, a multi-device database has been compiled from Asdex-Upgrade, DIII-D. and JET. The key issue in predicting the NTM beta limit is the relative scaling of the "seed" island $w_{\rm s}$ to the threshold island $w_{\rm th}$. For sawtooth induced m/n = 3/2 NTM, the relative threshold island width is taken from the polarization/inertial model² as $w_{\rm th}/r \propto \rho_{\rm i*} g^{1/2}(\epsilon, \nu)$ where g is a function of collisionality $\nu = \nu_i / \epsilon \omega_{e*}$ that increases from 1 at low ν to $\epsilon^{-3/2} \gg 1$ at high ν . The relative seed island scaling, allowing for the dynamics of geometrically coupled perturbations as a function of magnetic Reynolds number S^{3} is taken as $w_{\rm s}/r \propto \beta_{\theta}^{\gamma} S^{-\alpha} \propto \rho_{\rm i*}^{3\alpha} \nu^{\alpha}$ for $\gamma \equiv \alpha/2$. Thus the scaling of $w_{\rm s}/w_{\rm th} \propto \rho_{\rm i*}^{3\alpha-1} \nu^{\alpha}$ with $\rho_{\rm i*}$ depends critically on whether $\alpha \leq 1/3$. Best fits of experimental data will be presented.

¹Work supported in part by U.S. DOE Contract DE-AC03-99ER54463 and the U.K. Dept. of Trade and Industry and Euratom. ²H.R. Wilson *et al.*, Phys. Plasmas **3** (1996) 248. ³C.C. Hegna *et al.*, Phys. Plasmas **6** (1999) 130.

X

Prefer Oral Session Prefer Poster Session R.J. La Haye lahaye@gav.gat.com General Atomics

Special instructions: DIII-D Contributed Oral Session, immediately following M Okabayashi

Date printed: July 15, 1999

Electronic form version 1.4

OFTEN THE FIRST LIMIT ON BETA IN HIGH CONFINEMENT ELMING H-MODE

• q = 1 sawtooth induced m/n = 3/2 NTM; beta decreases by up to 30%

315-99 jy

HELICALLY PERTURBED BOOTSTRAP CURRENT CAN EXCITE NEOCLASSICAL TEARING MODE

DIMENSIONLESS SCALING MODEL

- w_{thresh} from polarization/inertial model (Wilson, et al., 1996)
 ★ w_{thresh}/r ∝ ρ_{i*} g^{1/2}(ν,ε) with g = (1+C₂ν)/(1+C₃ν) for ν ≡ ν_i/εω_{e*} and C₂/C₃ ≈ ε^{-3/2}
 w_d/r ∝ (χ_⊥/χ_|)^{1/4} ∝ ρ_{i*}^{1/3} for χ_⊥ ∝ χ_{BOHM} and χ_{||} ∝ C_sw⁻¹
 ... Fitzpatrick et al., incomplete pressure flattening
- w_{seed} from dynamical coupling model (Hegna et al., 1999)

$$\star \frac{\mathsf{w}_{seed}}{\mathsf{r}} \propto \left(\frac{\psi}{\psi_0}\right)^{1/2} \star \mathsf{f}\left(\frac{\mathsf{r}_1}{\mathsf{R}}, \frac{\mathsf{r}_{3/2}}{\mathsf{R}}, \Lambda\right) \star \mathsf{S}^{-\alpha} \propto \beta_{\theta}^{\gamma} \mathsf{S}^{-\alpha}, \alpha \text{ tbd}$$

rel. sawtooth amp. geometric m±1 dynamic shielding at q = 3/2 skin layer a function of S? coupling increases with mag. Reynold's no.

$$- \mathbf{S} \propto \beta^{1/2} / \rho_{i*}^3 \, \nu \Rightarrow \mathbf{w}_{seed} / \mathbf{r} \propto \rho_{i*}^{3\alpha} \nu^{\alpha} \text{ for } \gamma \equiv \alpha/2$$

•
$$\frac{W_{seed}}{W_{thresh}} \propto \frac{3\alpha - 1}{\nu} \frac{\alpha}{g} \frac{1/2}{\nu} \approx \text{ constant for } \alpha = 1/3 \text{ and fixed } \nu$$

 $-\alpha$ > 1/3 would be favorable for a reactor-grade tokamak

EXAMINE DIMENSIONLESS SCALING IN AUG, DIII-D AND JET

- LSND, ELMing H–mode, q95 ≥ 3
- Sawtooth induced 3/2 NTM database
- Extrapolate to proposed ITER/FDR

315-99 ју

CONTOUR PLOTS OF DATABASE FOR SAWTOOTH INDUCED 3/2 NTM

• A common separable power law of form $\beta_{NC} \propto \rho_{i*}^{X} (v_i / \epsilon \omega_{e*})^{y}$

— Does <u>not</u> represent the scaling, thus $\alpha \neq$ 1/3

• $\beta_N \propto \rho_{i*}$ is support for polarization/inertial threshold model

BEST FIT OF DATABASE TO PHYSICS MODEL HAS $\alpha \approx$ 4/9

CRITICAL BETA FOR NTM DEPENDS ON RELATIVE SCALING OF w_{seed} TO w_{threshold}

- w_{seed}/r decreases in dynamic shielding model at higher S - $w_{seed}/r \propto S^{-4/9} \propto \rho_{i*}^{4/3}$ (at fixed v)
- $w_{thresh}/r \propto \rho_{i*}$ from polarization/inertial model
- $W_{seed}/W_{thresh} \propto \rho_{i*}^{1/3}$ (at fixed v)
 - Favorable for ITER-FDR, i.e. at small ρ_{i^*}

★ Seed may be too small to excite NTM

... but depends on the difference of large extrapolations