Abstract Submitted for the DPP99 Meeting of The American Physical Society

Sorting Category: 5.1.1.2 (Experimental)

Multi-Device Dimensionless Scaling of Neoclassical Tearing Mode Beta Limit¹ R.J. LA HAYE, General Atomics, R.J. BUTTERY, H.R. WILSON, Euratom/UKAEA Fusion Association Culham, S. GUENTER, MPI f. Plasmaphysik, G.T.A HUYSMANS, Jet Joint Undertaking (now at CEA, Cadarache) — To extrapolate the neoclassical tearing mode (NTM) beta limit to reactor grade tokamaks, a multi-device database has been compiled from Asdex-Upgrade, DIII-D. and JET. The key issue in predicting the NTM beta limit is the relative scaling of the "seed" island $w_{\rm s}$ to the threshold island $w_{\rm th}$. For sawtooth induced m/n = 3/2 NTM, the relative threshold island width is taken from the polarization/inertial model² as $w_{\rm th}/r \propto \rho_{\rm i*} g^{1/2}(\epsilon, \nu)$ where g is a function of collisionality $\nu = \nu_i / \epsilon \omega_{e*}$ that increases from 1 at low ν to $\epsilon^{-3/2} \gg 1$ at high ν . The relative seed island scaling, allowing for the dynamics of geometrically coupled perturbations as a function of magnetic Reynolds number S^{3} is taken as $w_{\rm s}/r \propto \beta_{\theta}^{\gamma} S^{-\alpha} \propto \rho_{\rm i*}^{3\alpha} \nu^{\alpha}$ for $\gamma \equiv \alpha/2$. Thus the scaling of $w_{\rm s}/w_{\rm th} \propto \rho_{\rm i*}^{3\alpha-1} \nu^{\alpha}$ with $\rho_{\rm i*}$ depends critically on whether $\alpha \leq 1/3$. Best fits of experimental data will be presented.

¹Work supported in part by U.S. DOE Contract DE-AC03-99ER54463 and the U.K. Dept. of Trade and Industry and Euratom. ²H.R. Wilson *et al.*, Phys. Plasmas **3** (1996) 248. ³C.C. Hegna *et al.*, Phys. Plasmas **6** (1999) 130.

X

Prefer Oral Session Prefer Poster Session R.J. La Haye lahaye@gav.gat.com General Atomics

Special instructions: DIII-D Contributed Oral Session, immediately following M Okabayashi

Date printed: July 15, 1999

Electronic form version 1.4