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R.C. ISLER, Oak Ridge National Laboratory, N.H. BROOKS, W.P.
WEST, General Atomics, D.G. WHYTE, University of California, San
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Motivation for Carbon
 Source Studies

• Carbon is the major impurity in DIII-D.
• We would like to understand the

sources, production mechanisms, and
transport in an effort to minimize the
impurity content of the core plasma.

• The initial efforts have concentrated on
spectroscopic studies of carbon
produced in the divertor.



Spectroscopic Analysis

• Fluxes of C I - C IV diffusing in the  upstream
direction are evaluated using a simplistic
model in order to determine influxes and
shielding efficiency.

• Effective C I temperatures are obtained to
gain insight into sources.

• Band spectra are analyzed to see if
molecules play a role in carbon production.

• Parallel carbon ion flows in the divertor are
determined to assess the role of convection
in transport and shielding.



Visible Spectrometer Views into
the Lower Divertor
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• Fluxes  of low charge stages of
carbon from the divertor floor to the
core plasma are obtained by the
combining measured spectral line
intensities from the vertical views
with calculated ionization/photon
ratios.

Γ = I S(T)/X(T) B

• Electron temperatures are
assumed to be the same as the
measured ion temperatures.



Ionizations/photon for readily
observed lines of the low
charge states of carbon
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The divertor was adjusted to four different magnetic
configurations during a single discharge

V1 V2 V3 V4 V5 V6 V7

1600 ms 2600 ms

3600 ms 4600 ms

Attached Plasmas



0

5 1016

1 1017

1.5 1017

2 1017

2.5 1017

3 1017

3.5 1017

4 1017

0 1000 2000 3000 4000 5000 6000

#93638
C I - 8335 Å

V2
V3
V4
V5
V6

F
lu

x 
(a

to
m

s/
cm

2 -s
)

Time (ms)

4 MW NBI

0

2 1017

4 1017

6 1017

8 1017

1 1018

1.2 1018

0 1000 2000 3000 4000 5000 6000

#93645 
C I 8335 Å

V2
V3
V4
V5
V6

F
lu

x 
(a

to
m

s/
cm

2 -s
)

Time (ms)

9 MW NBI

Divertor C I influxes in attached plasmas

•Carbon production is strongest in the inner leg
• Somewhat surprisingly, the peak production
does not appear to be at the strike point.
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Fluxes of low stages of
carbon in attached plasmas
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Detached Plasmas
Influxes for C I, C II, and C III

detachment

• Apparent influxes decrease
with increasing ionization
stage
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Fluxes of C I - C IV 

•Neutral carbon is produced all along the inner divertor leg.
The radiation is only slightly peaked at the inner strike point.
•The calculated fluxes decrease strongly as a function of
ionization stage. Indications are that at least 96% of the
carbon produced in the divertor flows back to the target.
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Transport Modeling

• “Naïve” transport modeling with both diffusion and
convection has previously shown that strong
convection toward the target limits the upstream
density of carbon.
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View Lparallel (cm) τparallel (s)

T4 219 2.2 x 10-4

T6 84 7.6 x 10-5

T9 158 2.0 x 10-4

T5 1235 1.4 x 10-3

T10 531 8.9 x 10-4

Comparison of Ionization Times and
Flow Times to Strike Plate for C II

τ ion = 1.3 x 10-4 s     at 4.5 eV and 1014/cm3

Because of rapid parallel convection to the target,  it is expected that the
C II flux which diffuses upward toward the core is much less than the C I
influx.



Summary of fluxes, flows and source
locations

• Simple estimates of carbon fluxes indicate that about
95% of impurities produced in the divertor are
shielded from the core. This is similar to UEDGE
results.

• Measured convective flow velocities are consistent
with the shielding observations.

• The primary source location appears to be inside the
inner strike point in attached plasmas!

• The source seems to be almost uniform across the
target in detached plasmas!

• Both these results are surprising.



•The possible production mechanisms are
usually believed to be:

† physical sputtering
† chemical sputtering
† sublimation or radiation enchanced
sublimation

•In order to examine the active mechanisms
in DIII-D, we have conducted spectroscopic
studies of C I, C II, C III, C IV, CD, and C2.

Production Mechanisms



Expected Signatures for
Various Production Mechanisms

• C I atoms generated by physical sputtering should
have effective temperatures > 0.8 eV.

• Chemical sputtering involves the production of CD4.
This process is usually detected from excitation of
the CD 4300Å band system. C I atoms
subsequently produced should have effective
temperatures of 0.3 - 0.8 eV.

• Sublimation produces C, C2,and C3 in equal
amounts. RES principally produces C atoms.
Effective C I temperatures should be equal to the
carbon tile temperatures, i.e. < 0.3eV



Molecules

• The chemical sputtering mechanism produces an
influx of deuterated methane, which should be
detectable through excitation of the 4300 Å bands
of CD. These bands are rarely observable in DIII-
D, an indication that chemical sputtering is not
important in the divertor.
• Sublimation of the carbon tiles is expected to
produce C

2
. This molecule is detected through

excitation of the Swan bands. In general, they
appear only during disruptions, although they
sometimes show up weakly during normal
operation.
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CD4 influxes appear to be less
 than 1% of the C I influxes

• In this set of discharges
CD was observed only
along V7 and T8 which
terminate on the guard
ring.
• The CD4 flux is
calculated by assuming
100 dissociation
events/photon
• The C I influxes along
V2 - V6 are all estimated
to be in the range 1 - 2.5
X 1025 particles/cm2-s.
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Comparison of CD data and modeled spectra
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CD band structure calculations

• Detailed features of the experimental data are
not well modeled
• The general shape of the bands is best
reproduced by a rotational temperature around
0.3 eV
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Carbon Molecules

• Carbon molecules are
generally observed
during disruptions,
although they sometimes
do appear in the course
of a discharge.

C II

C2

simulation simulation



Summary of observations on molecules

• CD is rarely observed. This result appears to
preclude chemical sputtering as a major
source of carbon in the divertor.

• C2 bands are strong in the spectrometer
views only at times of disruptions, but we
cannot rule out sublimation of tiles
somewhere in the machine as an important
carbon source.

• Rotational temperatures for both molecules
are in the neighborhood of 0.3 eV, an
indication of little thermalization with the
background ions.



Do “effective” C I temperatures
indicate production mechanisms ?
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• In principle, C I line profiles need not be symmetric
since the distribution in velocity space is generally
nonisotropic. However, the profiles do not  usually
exhibit an obvious asymmetry.
• We define an effective temperature by fitting C I line
profiles to Maxwellian distributions.
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A typical Thompson distribution should produce an
effective temperature of several eV. Roth’s modified
formula predicts an effective temperature near 1 eV.
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Effective Temperatures from Singlet
and Triplet Lines of C I

• The instrument function is measured at 7065 Å
• Temperatures measured from singlet and triplet lines of
C I are in good agreement. This fact indicates differences
of the instrument profile with wavelength are not
significant.
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Measured C I Temperatures

• Effective C I temperatures are often well above 1
eV as might be expected for physical sputtering,
however, lower values, down to 0.5 eV, are also
typically observed.
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Effective C I temperatures in detached plasmas

• The C I temperature drops following detachment
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DIMES probe



Summary of the use of C I lineshapes for
diagnostic purposes

• Measurements of effective C I temperatures
do not provide clear evidence of a single,
dominant carbon production mechanism.

• Temperatures significantly above 1 eV seem
to point to physical sputtering as a source.
However, spectral lines from sputtered
particles should not appear symmetric unless
deuteron/carbon thermalization rates are
greater than ionization rates.



Final Summary

• Less than 5% of the divertor produced carbon gets to
the LCFS.

• Chemical sputtering does not appear to be a
significant source of divertor carbon. The possibility
of RES as a source requires more study.

• Although effective C I temperatures sometimes
indicate physical sputtering as the carbon production
mechanism, spectral linewidths in general do not
provide an unambiguous identification of the release
processes.



• Effective C I temperatures are often in a
range that indicates physical sputtering is
the dominant production channel.

• However, the apparent symmetry of the
lineshapes argues for an isotropic
production mechanism such as expected
from molecular breakup.

• But CD and C2 are almost never observed.

Inferences concerning carbon
sources



0

0.5

1

1.5

0 1 2 3 4 5 6

#98037
C I - 8335 Å

V2
V3
V4
V5

A
to

m
ic

 T
em

pe
ra

tu
re

 (
eV

)

Time (s)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

#98036
C II - 6579 Å

V2
V3
V4
V5
V6

Io
n 

T
em

pe
ra

tu
re

 (
eV

)

Time (s)



Flux Comparisons between the
Inner and Outer Divertor Leg



The mean velocity of a 1 eV carbon atom is 0.4 x 106 cm/s

The ionization rate coefficient at an electron temperature of 6 eV

is 0.6 x 10-8 cm2/s

At an electron density of 1014/cm3, the mean free path is 0.67 cm

Therefore, low-temperature atoms from the target plate should

penetrate only a short distance upstream



The flux of any ion determined from G = S(T)I/X(T)B
is a measured of the intial flux from the source minus
the flux that has diffused or been convected back to
the wall.

The characteristic ionization time for a C II ion at
electron temperatures and densities of 6 eV and
1014/cm3 is
 3.3 x 10-5 s.

At a typical parallel flow speed of 2 x 106 cm/s a C II
ion moves 66 cm in an ionization time.

This result, coupled with the short distance 1 eV
neutral particles can move before ionization,
indicates that a large fraction of C II can flow back to
the plate before being ionized to C III.



Spectra from the CD
4300 Å system
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Comparison of measured spectra
from two different sets of data
shows that most of the detailed
structure actually arises from
molecular emission and not from
noise.



Fluxes from the Inner
Divertor Leg



Attached Plasmas
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• The mean-free-path for ionizing a carbon atom at
an electron density of 4.5 eV and a density of
1014/cm3 is 1.3 cm. The C I flux indicates carbon is
produced almost uniformly across the strike plate.



0

5 1016

1 1017

1.5 1017

2 1017

2.5 1017

3 1017

0 1000 2000 3000 4000 5000 6000

#98037 - C I

(T
e
 = 4.3 eV, N

e
 = 1014/cm3)

V2
V3
V4
V5
V6

F
lu

x 
(c

ar
bo

n 
at

om
s/

cm
2
-s

)

Time (ms)

0

1 1016

2 1016

3 1016

4 1016

5 1016

6 1016

7 1016

8 1016

0 1000 2000 3000 4000 5000 6000

#98036 - C II

(T
e
 = 4.3 eV, N

e
 = 1014/cm3)

V2
V3
V4
V5
V6

F
lu

x 
(c

ar
bo

n 
io

ns
/c

m2 -s
)

Time (ms)

0

2 1015

4 1015

6 1015

8 1015

1 1016

1.2 1016

0 1000 2000 3000 4000 5000 6000

#98040 - C III
(Te = 13.17 eV, Ne = 1014/cm3)

V2
V3
V4
V5
V6

F
lu

x 
(c

ar
bo

n 
io

ns
/c

m2 -s
)

Time (ms)

Influxes for C I, C II, and C III

• The decrease in flux toward
the core plasma with
increasing ionization
indicates most of the carbon
produced in the divertor flows
back toward the strike plates

Detached Plasmas



Carbon Fluxes
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•Neutral carbon is produced all along the inner divertor
leg. The radiation is only slightly peaked at the inner
strike point.
•The calculated fluxes decrease strongly as a function
of ionization stage. This result indicates that at least
98% of the carbon produced in the divertor flows back
to the target plates.
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Do “effective” C I
temperatures indicate

production mechanisms ?
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C I Line Profiles
• In principle, C I line profiles need not be symmetric
since the distribution in velocity space is generally
nonisotropic. However, the profiles do not  usually
exhibit an obvious asymmetry.
• We define an effective temperature by fitting C I line
profiles to Maxwellian distributions.


