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Kinetic Theory of Tokamak Zonal Flow Dynamics

F.L. Hinton, M.N. Rosenbluth, P.H. Diamond' and L. Chen'?

General Atomics
San Diego, California 92186-5608, U.S.A.

e We consider the nonlinear interaction of two groups of fluctuating potentials
in tokamaks.
— Axisymmetric potentials, which include zonal flows
— Nonaxisymmetric potentials, which include drift waves

e A gyrokinetic description is essential for the axisymmetric potentials.
— We have shown that, for times longer than an ion bounce time,
residual flows develop, which are linearly damped only by collisions.
— What is the nonlinear damping of the zonal flows ?

e A gyrofluid description may be adequate for the nonaxisymmetric potentials.
— How to include these potentials in the axisymmetric kinetic description ?
— What role do the zonal flows play in the drift wave dynamics ?

e We answer these questions using a simple model.
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HINTON, M.N. ROSENBLUTH, General Atomics, P.H. DTAMOND,
University of California, San Diego, L. CHEN, University of California,
Irvine — The nonlinear interaction of drift wave turbulence with ax-
isymmetric potentials (sheared E' x B or “zonal” flows) is investigated.
Starting with the gyrokinetic equation in toroidal geometry, the axisym-
metric linear response is determined, including both geodesic acoustic
modes and collisionally damped residual flows. These flows are driven
nonlinearly by the drift wave turbulence. An equation for the drift wave
potentials is derived by using a simple ion fluid closure and assuming adi-
abatic electrons. For ion gyroradius much smaller than the wavelength,
this is equivalent to a polarization drift nonlinearity. An electron non-
linearity also exists because the electron response, to the axisymmetric
potentials, is not adiabatic. The electron nonlinearity is essential for
energy conservation in the coupled equations for the potentials. Weak
turbulence theory is used to derive equations for the drift wave and zonal
flow intensities.
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Nonlinear Interaction in a Cylindrical Model

In the electrqstatic approximation, the potential is determined by quasineu-

trality:
e o
g Z ?F——qb(m,t) = Z e/dsv G(Z,d,t)

where

—_ — da — - =
G(7,7,t) = f “29(@ ~ B, 7,1

where « is the gyro-angle, p = v /€2, and where g is a solution of
the gyrokinetic equation (GKE):

Og Og e _ 0P C
- + F
ot 0z T ~ 0Ot
where C is the collision operator and S is the E X B nonlinearity:

C
S=——¢&, X VP.Vg
B
The gyro-averaged potential is defined by

- d -
q)(Ra V1, t) — 7( 'é%qS(R + 59 t)
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Electrons are Nonadiabatic for Zonal Flows
We write the potential as the sum of two parts:

p=0¢+ ¢

where qb is the average over @ and z, the zonal flow potential, and
where ¢ is the 0 and z - dependent drift wave potential.
The electron GKE, neglecting collisions, is

0g. dg. e 8¢ c
. = ——F3— — —&, X V¢ - V(F, .
B + v oy T L Be @+ V(Feo + ge)

Taking the average over 8 and z, we have

T _ 252 Vv
= ——Lleo— — <€z . e
ot T, 8t B 7

where g. = Gz + g, as with the potential.

(6)

(7)

(8)
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Assuming w / (kve) < 1 we expand in this small parameter to obtain

ge >0

and therefore 7i, = ng(e/T.)¢ (adiabatic electrons).
Using this in Eq.(8), we find

ge = Te e0

and therefore 7, = e {nonadiabatic electrons).

Quasineutrality thus has two different forms for c,b and ¢:

Nge€

——)qb /d3v G;

and

Ng€ — S
= v G;

(9)

(10)
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Time Derivative of Quasineutrality
Taking the time derivative,

noe 0 _,.—-, _/ o —

T; Ot ot
and
Nge
—)— d? —Gz
T; (1+ T ) th6 / v
We now use Fourier transforms:
¢ ¢ — &z
where k = (k,, kg, k») and § = (g»,0,0). Then
noe 0Pz / 3 ngq
d’v Jo(qg,
T. ot o(q P)

and

Nngpe T; 3¢f5 / 3
1 = [d
T; (1+ Te) ot

(13)

(14)

(15)
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Zonal Flow Equation
The Fourier transform of the average of the GKE is
Bgz-,-f e

qb
—Cu g — < L2 J r "l' Sz"
ot Jig = 7 0 o(grp ) 9

(18)

Using this in the time derivative of the symmetric quasineutrality equation, we

obtain the equation for the zonal flow potentials:
0dg T,

- V - -_—
X7 ( ot + q¢q> Nge

where v, is the collisional viscous damping rate,

fdsv JO(Qrp)cii (JO(Qrp)Fz'O)
’I’LQPO (bq) (1 — Fg (bq))

and where the linear susceptibility is

T,
Xg = 'T“ (1- I‘O(bq))

d?v Jo(q.Lp)Siz

qu_

with I‘o(b) = e~%Iy(b), where Iy is a modified Bessel function,
by = q2a?, and a; = (T;/m;)*/? /9.

(19)

(20)

(21)
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Drift Wave Equation .
Assuming k) v; < w and neglecting collisions, the k component of the GKE

is
22 = —F;oJdo(k —= — —k - V.07 S,z 22
Ui _ £ Fodo(kir) | mt — R Tds| + S5 (2
where ¥, = —(cT./eB)é. x V Inng. Using this in the time derivative of the
quasineutrality equation, we obtain the equation for the drift wave potentials:
3¢E T, / 3
- | —= F gy | = d’v Jo(kip)S.; 23
X ( ot + k¢k> o€ 0( _LP) ik ( )
where the linear susceptibility is
T
xg =1+ T (1 — To(br)) (24)

with b, = k2 a?, and the linear frequency is

Lo (br)
Xk

k- T, (25)

ad

k=
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E x B Nonlinearities
The nonlinear terms are the Fourier transforms of the ExB nonlinearities in
the gyrokinetic equation:

Siz = (c/2B)Y _ &.- k' x k" [Jo(K.p) b5 9:5n — Jo (K| p) D597 )(26)
k(k'=§—Fk')
Also
Sig = (C/ZB)Z ey * k' x k" [Jo(kj_p)qb,;,gi,;;,, - Jo(klp)ﬁbigngigz]
k' (k'=k—k')

+(c/B)Y_ &.- @ x k" [Jo(q,p) a9 — Jo(K p)bgngia](27)
g (k"=k-7)
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Approximate Fluid Closure Relations
To evaluate the nonlinear terms, we need approximate relations between
9;is 9ig and @z, ¢Piz. We use a simple fluid approximation for the ions:

F; = Fyp [1 + 6n;(Z,t)/no] (28)

Then, using g(R, 3,t) = F;(R + B, ¥,t) + (¢/T;)Fo¢(R + B, 7, 1),
we have

g9,; = Jo[F;z + (e/T;)Fiog] = JoFio [0m,z/m0 + (e/T;)pz] (29)

Using quasineutrality with adiabatic electrons,

n T;
;e (1 + )qbk / d®v Jo(kLp)9;i
on.;
= noTo(bx) [ o m} (30)
we find
e T; Jo(kLp)
Jik = ; (1 T Te> Fio T'o(br) i (31)

+{* ceneraL ATOMICS



Similarly for the symmetric potentials: using
gig = JoFyo [0niz/mo + (e/Ti) ¢g] (32)

and the appropriate quasineutrality equation,

Nge€
T;

Gz = / d®v Jo(grp)gig (33)

to determine dn;z, we obtain

€ Jo(grp)
8 = —F; 7 34
g q E 0 PO(bq) ¢q ( )
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Mode Couplingv Equations
Substituting the closure relation for g i into Eqs.(19) and (26), we find

Dby 1/ T L
Xq ( ¢q + Vq¢t'1'> - = (1 -+ E.,—) ZM(’{S,, q— k’)¢]}’/¢q’_iél (35)
€ ’-;,

ot 2
where
MRy, ) = 222 (6. - Ty x Fa)T(R E)[ L | (36)
— €, * —_
19 V2 BT»’L 1 2 1s V2 Fo(bz) Po(bl)
with by = k2 a2 and b, = k2 a?, and
- - 1
Z(Ry,Fa) = — / &30 FigJo(ksip)Jo(kiip)Jo(kerp)  (37)
0

in which ks is defined by k; + ko + k3 = 0.
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Similarly, substituting the closure relations for g, and g;5 into Egs.(23) and
(27), we find

e

6¢“ . 1-;, - hend -
X (—& + i k’) =3 (1 + "f') Y MK, k—k)opdi_i

where

s L cC . Z(§, k)
N(F, k)= M(G, k) + —(é.-Gx k
(g, k) (g, k) B( q )I‘o(bk)

(39)

Eqgs.(35) - (39) generalize to arbitrary ion gyroradius the equations for zonal flow
and drift wave potentials given by Smolyakov, Diamond and Malkov, 1999 (to be

published in P.R.L.)
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The Electron Nonlinearity
In the long wavelength limit, k2a? < 1 and g?a < 1, the matrix

2

element for drift wave - zonal flow scattering is approximately

C

—&,-Gxk /(Agf
B! |

N(g, k) ~
This can be identified with the term
—I%éz .V XV (507

which must be added to the Hasagawa-Mima equation to account for the nonadia-
batic electron response to the zonal flows: see Smolyakov, et al, 1999. Since this
nonlinearity is not small in k2 a? at long wavelengths,

it dominates the drift wave - zonal flow scattering.
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Energy Conservation
Multiplying Eq.(35) by ¢z and summing over ¢, we obtain

8 ) .
Y ZXq‘qbquEi = —2 Z VgX§P3Pq
q q
1 T; =, =
+3 1+ E Y M(k,§ — k)¢iopd,s_i + c-c. (40)
3,k

(where c.c. means complex conjugate) Similarly, multiplying Eq.(38) by ¢7 and

summing over k, we obtain
8 %
5% Y xpbitr =2 ViXidi%%:
k k

1 T, oL
2 (1 i —T—) Z MK,k — k’)¢2¢ﬁf¢75_75, + c.c.

2 _—
kR
+) NG,k — §)dipa0;_5 + cc. (41)
k,d
where ~;, the linear growth rate, is now included ad hoc.
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We use the symmetry property of M,
M (Ky, k2) + M (kg k3) + M (k3, k1) = 0 (42)

where k1 + kz + k3 = 0, and the reality condition ¢_z = qb* to show that
the drift wave - drift wave scattering conserves energy:

ReY M(K' k—k)dLidgydiip =0 (43)
k,k'

Also, using the relation between N and M,

N (K1, k2) + N(ky, ks) + ( + ) M(k2,ks3) =0 (44)

e

we find that the drift wave - zonal flow scattering also conserves energy:
T; = = L.
L+ ReZ M(k,§ — k)¢50p0:_
9,k |

+2Re Y N(G,k — §)¢idapz_; =0 (45)

k,q
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Therefore, the energy is changed only by the linear damping and growth:

Y xad5¢q + Y xpdrtr| = Y vexadida
g i g

o
ot

+ ) mexedror  (46)
k

A steady state, achieved by balancing the linear growth of the drift waves
with the collisional damping of the zonal flows, implies

N |
|¢k|2 - qgXq <1 (47)
#al*> vexg
We have assumed o | . | 1 |

vp ~ wp ~ kipscs /Ly, and also that the collisional damping
Vg is small:

71« ~ <1 (48)

Qi k_LLn Qan

Therefore, the zonal flow potentials are
much larger than the drift wave potentials.
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The Dominant Mode Coupling Terms
The equations for the dimensionless Fourier amplitudes (¢ = e¢/T.) are

0d;
th ZA o PE Pk (51)
ooy .
5 T (Wi — 1% = 5 a A% 07 Pi_g (52)
where we have defined
T, T\ Mk, k"
Afﬁ"=—-(1+ ) LELY (53)
€ Te XE/+EN
and
2T. N (G, k
ADPZ — (@, k) (54)
g,k

The mode coupling terms in Eq.(38) involving ¢, 551‘5—1'5' have been neglected
because they are smaller than the terms involving Jsz/ ‘ch’——fi’ by a factor of order

k2 p?|pz/dg| < 1, for small kL p.
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Zonal Flow Intensity Equation
We use the weak coupling approximation (Kadomtsev, Plasma Turbulence,

p.49) to obtain equations for the intensities Iz = <|q§q| > and I = <|¢k 2)

aI;
5 T (e +1ma)lg = > it di i (55)
k!

where the nonlinear damping rate is

AZD _ADZ (FE'-G + I‘;,») .

. Z k”'k’ qk’

1/ q (56)

and the nonlinear excitation coefficient is

te) (e mec)

k' G—k' k! g—Fk’

A(’j,ic" —_ 4 2 2 (57)
<w];/ — wE’—-fj) + (I‘fc’/ + I‘;j___];/)

with T';; and T'; the assumed decorrelation rates for the potentials ¢ and ¢g.
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1 "
Nonlinear Damping of Zonal Flows
In the long wavelength limit,

(58)

11-) (e. - k' x §)2(q® — 2k.q,)

AZP L APE .~ 2p2ck (1
k ps s + Te qf

k' G- ‘hz’ol"{i

e '~ the nonlinear damping rate of zonal flows has a
simple dependence on q,:

M < q- (59)
Also, | this damping rate is negative:
UFi <0 (60)

so the zonal flows are nonlinearly unstable. In fact, since the A terms in Eq.(55)
are small, we must have

Mg =~ —Zuqéx qf 4 Since %x))ié 461?:) (61)
Therefore, the saturated drift wave intensity is proportional to the collision fre-
quency:
I; x v; (62)
which agrees with the gyrokinetic particle simulations of Z. Lin, et al, (P.R.L. Nov.
1,1999), and Dismond , ot ab. A=A 1448,
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Drift Wave Intensity Equation

ol;
'5'; + nply = 2 1; + Z Ak i+ Lg I q (63)

where the nonlinear damping rate is

_ 1 Z ADZ APZ . (T; +Ty)
2 + (Pk + F*’)

I, (64)

q

(we have neglected smaller contributions proportional to I;_.)
and the nonlinear excitation coefficient is

(ABZI‘: ) (Tz + Ti-g)

(65)
~q' 2+ (I‘Fi’ + I‘l'c'—?i’)z

1
Arg = 5
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Nonlinear Damping of Qrift Waves .
Using the dominant approximation N (g, k) ~ (c/B)eé. - § X k, we have

ADZ L APZ L~ —4p?c(e. - F x k)* <0 (66)
Therefore, the nonlinear drift wave damping is positive:
n; > 0 (67)

i.e., drift waves are damped by scattering from zonal flows. This is the mechanism
of shear suppression of turbulence, within this simple model.

0“ GENERAL ATOMICS



Conclusions

For long wavelengths and small collision frequency,

the zonal flow potentials are much larger than the drift wave potentials.
The nonlinear "damping” of zonal flows is given by Eq.(56); for long wave-
lengths and k, < g., we find 17; o< g2 and n; < O (nonlinear instability).
The nonlinear damping of drift waves is given by Eq.(64); for long wave-
lengths and k, < gq,, we find n; > 0 (shear suppression).

The saturated drift wave intensity is proportional to the ion-ion collision fre-

quency: Iy o v;;.
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