High Harmonic Ion Cyclotron Heating in DIII-D: II. Sawtooth Stabilization1 W.W. HEIDBRINK, T. DANG, UC Irvine, F.W. BAITY, E.A. LAZARUS, Oak Ridge National Laboratory, S. BERNABEI, E.D. FREDRICKSON, Princeton Plasma Physics Laboratory, J.S. DEGRASSIER, C.C. PETTY, R.I. PINSKER, General Atomics, B.W. RICE, Lawrence Livermore National Laboratory — Combined neutral beam injection and fast wave heating at the fourth cyclotron harmonic can produce an energetic, perpendicular deuterium beam-ion population inside the $q = 1$ surface. The beam-ion tail transiently stabilizes the sawtooth instability but destabilizes toroidicity-induced Alfvén eigenmodes (TAE). Saturation of the central heating correlates with the onset of the TAE. Continued expansion of the $q = 1$ radius eventually precipitates a sawtooth crash; complete magnetic reconnection is observed. In recent experiments, the effect of plasma shaping, harmonic number, and beam species on these findings are investigated.

1Supported by Subcontract SC-G903402 to U.S. DOE Contract DE-AC03-99ER54463, and U.S. DOE Contracts DE-AC05-96OR22464, DE-AC02-76CH03073, DE-AC03-99ER54463, and W-7405-ENG-48.
- The RF accelerates deuterium beam ions inside q=1.

- The precessing beam ions transiently stabilize the internal kink.

- The beam ions destabilize the TAE, which limits the central electron temperature.

- Current accumulates on axis and the q=1 radius expands until kink stability is lost.

- Complete reconnection occurs at the sawtooth crash.
At an H-mode transition:

- The RF power drops
- The density rises
- Sawtooth period shortens as tail disappears
Beam-Ion Tail Necessary but not Sufficient for Stabilization
1.0 MW Needed for Stabilization

SAWTOOTH PERIOD (ms)

60 MHz POWER (MW)
Central Heating Required

![Graph showing the relationship between sawtooth period (ms) and \(\omega_{RF}/\Omega_0(0) \).]
CONDITIONS FOR SAWTOOTH STABILIZATION

- Enhanced Neutron Rate
 Precessing Beam Ions Stabilize

- Adequate RF Power
 Need Beam-Ion Tail

- Low-to-Moderate Density
 Long Slowing-Down Time

- Central Heating
 Beam ions inside $q=1$

- Threshold Power Density similar to JET, TFTR, JT-60
 Different heating schemes all create fast-ion tails

- Favorable shape
 Competition between Tail formation and MHD Stability
Shape Impacts Stability
Not Beam-Ion Absorption

![Graph showing sawtooth period vs upper triangularity and neutron enhancement vs upper triangularity.](image-url)
Power Density for Stabilization is similar for other heating schemes.

TFTR \(l=1 \) > 2.2 MW

JET \(l=1 \) > 3 MW

DIII-D \(l=4 \) > 1 MW
ALFVEN EIGENMODES DESTABILIZED BY BEAM IONS

- Modes only occur when beam ions are accelerated. Driven by beam-ion tail.

- Frequency is $V_A/2qR$ or V_A/qR.
 Toroidicity-induced Alfven eigenmode (TAE)
 Ellipticity-induced Alfven eigenmode (EAE)

- TAEs appear midway in sawtooth cycle.
 Critical beam-ion beta for instability.

- TAEs disappear at sawtooth crash.
 Beam ions redistribute at sawtooth crash.

- TAEs cause saturation of central T_e.
 Central beam-ion density clamped by TAE.

- Only single modes observed.
 System close to marginal stability.
EAE and TAE

T_e (keV)

shot 100401, channel: b1, log scale of \sqrt{\text{autopower}}

Intensity scale 1.226

TIME (s)

FREQUENCY (kHz)
TAE Causes Saturation of Central Electron Temperature
- n=1 magnetic precursor grows at 3/ms
- Very small island on ECE; rapid crash
- Partial reconnection events early in cycle
 \[\Rightarrow\] q not monotonic after crash?
Rapid Crash Redistributes Beam Ions as Theoretically Expected

MIRNOV (T/s)

T_e (keV)

NEUTRONS (10^{14} n/s)

RELATIVE TIME (ms)
CURRENT DIFFUSION CAUSES SAWTOOTH CRASH

- Required beam-ion population for sawtooth stability is proportional to \((q=1 \text{ radius})^3\)
- Beam-ion population is clamped by the TAE

\[\Rightarrow \text{Crash always occurs at the same radius} \]
INDEFINITE SAWTOOTH STABILIZATION

- More RF Power does not work
 Just excite TAE sooner

- Want $\omega_{\text{pre}} >> \omega_{\text{ST}}$ but $\omega_{\text{pre}} << \omega_{\text{TAE}}$
 Stabilize sawtooth without driving TAE

- A fast-ion distribution with lots of moderate-energy ions but no tail is optimal \Rightarrow High-harmonic heating of beam ions can work well

- Must halt current diffusion \Rightarrow Use bootstrap and off-axis ECCD
How to stabilize sawteeth indefinitely?

1st Problem: Sawtooth stability and TAE instability are both caused by precessing beam ions.

\textbf{⇒} Can’t increase the beam density past the TAE threshold.

\textit{Is there an optimal distribution function for sawtooth stability without TAE instability?}

\textit{Is there a condition with stronger TAE damping?}

2nd Problem: Stability is lost when the q=1 surface grows too large. The “natural” inductive current profile is too peaked for steady-state operation.

\textbf{⇒} Use non-inductive current drive to halt the current diffusion.
Arrange Conditions so Precession Speed and Injection Speed Coincide With Peak of Velocity Diffusion Coef.

\[
\gamma_{\text{TAE}} \propto \frac{\langle \omega_d f \rangle}{\langle \omega_d f \rangle} = \frac{\langle w^2 f \rangle}{\langle w f \rangle}
\]
Future Work

- Study the effect of shape, q profile, and Alfvén activity on the evolution of the electron temperature (partial reconnection events).

- Calculate MHD stability for different shapes. Develop a semi-empirical model that explains when a monster sawtooth occurs.

- Use current drive and a beam-ion tail to stabilize the sawtooth indefinitely in a plasma with $q_0 < 1$.
Conclusions

- Need a beam-ion tail inside the $q=1$ surface for a monster sawtooth. Consistent with Porcelli's theory of stabilization by precessing ions.

- A favorable shape helps. Shape affects MHD stability and/or the initial q profile.

- At the monster crash, complete reconnection occurs and beam ions are redistributed. Consistent with Kadomtsev model and Kolesnichenko theory.

- The TAE clamps the beam density. Current diffusion causes the crash. Must suppress the TAE and use non-inductive current drive to operate with $q_0<1$ without sawteeth.