High Harmonic Ion Cyclotron Heating in DIII-D: II. Sawtooth Stabilization

W.W. HEIDBRINK, T. DANG, UC Irvine, F.W. BAITY, E.A. LAZARUS, Oak Ridge National Laboratory, S. BERNABEI, E.D. FREDRICKSON, Princeton Plasma Physics Laboratory, J.S. DEGRASSIE, C.C. PETTY, R.I. PINSKER, General Atomics, B.W. RICE, Lawrence Livermore National Laboratory — Combined neutral beam injection and fast wave heating at the fourth cyclotron harmonic can produce an energetic, perpendicular deuterium beam-ion population inside the $q = 1$ surface. The beam-ion tail transiently stabilizes the sawtooth instability but destabilizes toroidicity-induced Alfvén eigenmodes (TAE). Saturation of the central heating correlates with the onset of the TAE. Continued expansion of the $q = 1$ radius eventually precipitates a sawtooth crash; complete magnetic reconnection is observed. In recent experiments, the effect of plasma shaping, harmonic number, and beam species on these findings are investigated.