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Interaction of an External Rotating Magnetic Field
with the Plasma Tearing Mode Surrounded by a Resistive
Wall1 S.C. GUO, Consorzio RFX, Padova, Italy, M.S. CHU, General
Atomics — The effect of an externally rotating magnetic field on the
plasma tearing mode surrounded by a resistive wall is studied. A pair
of tearing mode evolution equations describing the magnetic energy and
angular momentum balance across the magnetic island are used. The
model is valid for both the RFP and the tokamak. The pair of equa-
tions is solved numerically to determine the equilibrium amplitude and
phase of the tearing mode with respect to that of the external magnetic
field and the phase stability of the combined system. When the external
magnetic field amplitude is large, the tearing mode frequency is locked
to that of the external field above minimum amplitude. Dependence of
the critical unlocking amplitude and the phase stability on parameters
relevant to present day experiments are obtained. In the opposite limit,
when the amplitude is small, the external field is not sufficient to lock
the tearing mode below a critical amplitude. Dependence of this critical
locking amplitude on plasma characteristics and external wall distance
is also obtained. Possible utilization of the external rotating field to
stabilize the tearing mode is also discussed.2
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OUTLINE

• Introduction

• Model Equations

• Steady state solutions and phase stability analysis

— Mode locked to the external rotating applied field; unlocking threshold

— Mode unlocked; locking threshold

• Intrinsically unstable modes and stable modes

• Summary and discussion
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INTRODUCTION

• Key (MHD) issues in the operation of fusion devices:

* Avoidance of locked mode induced by resistive wall and/or error field.

* Active stabilization of low m resistive MHD modes.

• One of the possible approaches is to externally apply an rotating helical magnetic
field, as some experiments have tested (DIII-D1, JET2, RFX3...).

• The problem involves non-linear interaction of plasma modes with external
magnetic perturbation and/or resistive wall.  Various theoretical studies have
been done on this field.4

• In this work, we derive and solve the tearing mode evolution equations
(equilibrium solution), which involve the effects of both resistive wall and rotating
external magnetic field.  The model equation can be applied to both tokamaks
and RFPs.
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MODEL EQUATIONS

• Cylindrically symmetric plasma (r = a) surrounded by a resistive wall rw = b, and a
perfect conducting shell rsh = c

Plasma Shell
Resistive

Wall

Vacuum

b cars r

Vacuum

• The equation governing the magnetic perturbation due to a tearing mode (in outer
region)

d
dr

f(r)
dψ
dr





 − g(r)ψ = 0     where    ψ = rbr



QTYUIOP
328-99-5

MODEL EQUATIONS

• Boundary Conditions

✽ Thin shell approximation for the resistive wall

  

δb
b

<< ωτb < b
δb

✽ Externally applied rotating magnetic field   ψex at  rex = c;
with frequency   ωex

• Assumptions

✽ The plasma is assumed to rotate only in the toroidal direction

✽

 

1

ωp
2

dωp

dt
<< 1

✽ Validity of Rutherford equation:  w / δVR ≥ 1, Constant-ψ
(Fitzpatrick, 1999; Riconda et al., 1999)
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TEARING MODE EVOLUTION EQUATIONS

• Without loss of generality, 
 
ψm,n

can be separated  into three parts:

ψm,n = ψs + ψb + ψex
= Ψsψ̂s (r) + Ψbψ̂b (r) + Ψexψ̂ex (r)

Ψs

rs

Ψb

Ψex

  

TEM
m,n =

2π2R0

µ0

n

m2 + n2εs
2 Im ψm,n

* r
dψm,n

dr




 rs

−

rs
+












  

∆ = ′∆srs = r
dψm,n

dr
ψm,n

* +
dψm,n

*

dr
ψm,n











rs

−

rs
+

2 ΨsΨs
*

• Evolution equations

 
4IτR

d |Ψ|
dt

= ∆plasma + ∆wall + ∆ex

 
4 |Ψ|

d∆ω
dt

= Tplasma + Twall + Tex 
 ∆ω = ω0 − ωp
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TEARING MODE EVOLUTION EQUATIONS

 
∆plasma = ′∆b (0) 1−

|Ψ0 |

Ψ0







 

∆wall = −
EsbEbsEbb

ωp
2τb

2 + Ebb
2

 

∆ex =
EsbEbex

ωex
2 τb

2 + Ebb
2

Ψex
Ψs

cos(∆ϕ − θ)

 
Tplasma = Gν

τν
ω0 − ωp( ) Twall = Q

EsbEbsωpτb

Ebb
2 + ωp

2τb
2

Tex = −Q
EsbEbex

Ebb
2 + ωex

2 τb
2

Ψs Ψex sin(∆ϕ − θ)

 
Eij = r

dψ̂ j

dr









i

        i, j = s, b, ex

 
∆φ =

0
t

∫ ωex − ωp( )d ′t + φ0ex − φ0p

θ = tan−1 ωexτb
|Ebb |
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TEARING MODE EVOLUTION EQUATIONS

(a) Resistive wall stabilization

Ψs = Ψ0 1− EsbEbsEbb

ωp
2τb

2 + Ebb
2

1
′∆b (0)













2

 τb → ∞      Ψs = Ψ0 ;       τb → 0    
  
Ψs0 = Ψ0 1−

EsbEbs
Ebb ′∆b (0)










2

= Ψ0
′∆c (0)
′∆b (0)










2

0

0 .002

0 .004

0 .006

0 .008

0 . 0 1

0 .012

- 2 0 - 1 0 0 1 0 2 0 3 0 4 0

ψ
0
=0.00025

ψ
0
=0.00075

ω

ψ
s

p τb
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PHASE STABILITY ANALYSIS

Increment of
δωp, δφ

Decrement of
δωp, δφ

Perturbation
δωp, δφ

Variation of
torque balance

Steady state
ωp, φ

Stable

Unstable

Variation of ψs
due to δωp, δφ

Variation of TEM
due to

δωp (or) δφ
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∆′plasma + ∆′wall = 0 Tplasma + Twall = 0

• For ω0 < ωc,
continuous spectrum

• ωψ < ωc,
bifurcated spectrum
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01:43:36

STEADY STATE SOLUTION I: FOR Ψex = 0
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(a) Bifurcated solution

[m = 1, n = 0, ψ0 = 0.25×10–3, ∆b (0) = 0.3]

(b) Continuous solution
ωp = ωex
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STEADY STATE SOLUTION II: LOCKED UNSTABLE MODE
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STEADY STATE SOLUTION II:  LOCKED UNSTABLE MODE

• Stability Boundary [for case (a) lower frequency solution]

0 10
0

1 10
-3

2 10
-3

3 10
-3

4 10
-3

- 1 5 - 1 0 - 5 0 5 1 0 1 5

Unlock Threshold 

ω τ

ψ
e x

b

- 0 . 6

- 0 . 4

- 0 . 2

0

0 . 2

0 . 4

0 . 6

- 1 5 - 1 0 - 5 0 5 1 0 1 5

Phase (on Threshold)

ω τ

(∆φ−θ)/π

b

•
 
∆ϕ0 − θ ≤ π

2
,       ωp ~ ωp

L ~ 0
 
∆ϕ0 − θ <~ π

4
,       ωp ~ ωp

H ~ ω0
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STEADY STATE SOLUTION II:  LOCKED UNSTABLE MODE

• Stability Boundary [for case (a) lower frequency solution]
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STEADY STATE SOLUTION III:  UNLOCKED UNSTABLE MODE

  ωp ≠ ωex( )
(a) Analysis

 Ψs = Ψs0 + δψ s

 
Ψs0 = Ψ0 1+

∆wall

′∆b (0)










2

δψ s = 1
2IτR

P
|Ψex |

|Ψs0 |1/2
1

α2 + (ωex − ωp )2
cos(∆φ − θ − β)

• δψs oscillates in time, so the torque Tex also oscillates in time

• Assumption:  Plasma is sufficiently viscous that it responds only to the steady
components

 
Tex = QP2

4IτR

|Ψex |2

|Ψs0 |1/2
(ωex − ωp )

α2 + (ωex − ωp )2



STEADY STATE SOLUTION III: UNLOCKED UNSTABLE MODE
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(b) Results (for ωp > ωex > wp)

• The unlocked ωp
solution exists when

ωp < wc,
or
ωp < wc

H

H

L
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STEADY STATE SOLUTION III:  UNLOCKED UNSTABLE MODE

(c) Locking threshold   ψ exc and corresponding  ψ sc

0

5

1 0

1 5

2 0

2 5

3 0

3 5

2 2.5 3 3.5 4 4.5ψ

( 10-3)
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ωc = 3 . 3 τbωe xτ b = 2 6 . 2

• Locking threshold   ψ exc is much larger than unlocking threshold

For   ψ 0 = 2.5 × 10−4,
 
 
  ψexc (unlock) = 2.4 × 10−4 (ωpτb = 3.3),    ψexc (lock) = 4.8 × 10−3



STEADY STATE SOLUTION IV: LOCKED STABLE MODE
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• For intrinsically stable plasma, if the external field is rotating in the plasma frame,
there will still be a torque acting on the resonant surface due to inertia and
dissipative effects. This torque acts to bring the tearing mode to rotate together
with ωex. Once the locking happens, a full reconnection occurs.
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10/31/99 fexv (psi, om)
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STEADY STATE SOLUTION IV: LOCKED STABLE MODE
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• For intrinsically stable plasma, if the external field is rotating in the plasma frame,
there will still be a torque acting on the resonant surface due to inertia and
dissipative effects. This torque acts to bring the tearing mode to rotate together
with ωex. Once the locking happens, a full reconnection occurs.
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SUMMARY AND DISCUSSION

• A pair of tearing mode evolution equations, which describe the magnetic energy
and angular momentum balance across the magnetic island are derived

• Steady state solutions are obtained numerically:

(a) The locking solution (  ωp = ωex) provides the required   ψ ex and   ∆φ0

— When the external field is reduced beyond a critical amplitude (unlocked
threshold), the locking is lost

(b) The unlocking solution (ωp ≠ ωex) describes how the mode frequency and 
amplitude are influenced by the external field

— When the external field is increased beyond a critical amplitude (locking
threshold), the tearing mode will then become locked

• The resistive wall introduces an extra phase shift

• Discussion: Is it possible to force a transition from   ωp
L to   ωp

H by applying a
rotating external magnetic field?


