
tee-99aps.01

Good�
Confinement

Region

SOL

Axisymmetric
Poloidal Divertor

D   f
lo

w

� +

strike points

MCI�

Domain 

Separatrix

Graphite
Walls

Cryopump
Chamber

E

1.0e+02
      10.0
        1.0
      0.26

19 -3Electron Density (x10   m   )

* 1999 National Undergraduate Fellow



Abstract Submitted
for the DPP99 Meeting of

The American Physical Society

Sorting Category: 5.1.1.2 (Experimental)

Monte Carlo Impurity Studies of Carbon Dynamics
in the DIII-D Divertor and Scrape-off Layer1 T.E. EVANS,
W.P. WEST, General Atomics, D.F. FINKENTHAL, Palomar College,
K.S. LEUENROTH, Rensselear Polytechnic Institute, R.C. ISLER, Oak
Ridge National Laboratory — In DIII–D measured sources of carbon
influx in the divertor have decreased with time and the number of
boronizations. Over this same period the plasma core carbon content has
essentially remained constant. In order to better understand these ob-
servations the Monte Carlo Impurity (MCI) code is being used to study
carbon sputtering and transport from the DIII–D divertor and wall. A
comparison with spectroscopic measurements is also being made. Initial
results show that standard chemical sputtering models yield too much
carbon radiation in the DIII–D divertor and are unable to reproduce
the observed carbon source variation. By spatially reducing chemical
sputtering yields to simulate the effect of boron migration over a series
of plasma discharges we obtain more realistic levels of carbon radiation
in the divertor but can not yet explain a constant core carbon content.
Details of these studies will be presented and preliminary results from
wall source simulation will be discussed.
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ENG-48 and by the U.S. 1999 National Undergraduate Fellowship Pro-
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Motivation 
Does chemical sputtering contribute

significantly to the core carbon density?  
In DIII-D there is current very little evidence of chemical 
sputtering in the divertor region:  

Strong CD bands were observed in the divertor prior to
boronization but have become very weak with addition
multiple boron layers over the last few years     

Over the same period carbon emissions in the divertor
have dropped significantly suggesting a reduction in
the local carbon source   

While the carbon density in the divertor has fallen, the core
�

carbon content has generally remained constant or increased
slightly:  

Does this imply that the core carbon comes predominently
from wall sources which are unaffected by boron, or  

Is it possible that chemically sputtered carbon from the
divertor does not contribute significantly to the core  

The DIII-D Monte Carlo Impurity (MCI) code is being used to
�

better understand how carbon gets into the core from various
locations in the divertor and whether chemical versus physical
sputtering sources are more effective in fueling the core  

tee-aps99.02�

Initial results indicate that atomic carbon, due to physical
sputtering, has a higher probability of reaching the core
than carbon resulting from chemical sputtering with its
associated molecular hydrocarbon dissociation/transport   



Monte Carlo Impurity code
Overview 

tee-aps99.03�

Forces identical to those used in fluid codes:  

Perpendicular ion transport is anomalous  

Classical parallel ion transport that accounts for:

drag due to background ion flows, and  

collisional diffusion along field lines 

ion and electron thermal gradients 

parallel electric fields  

Supplied by fluid codes such as UEDGE.

Impurity transport physics

Background plasma solution

Sputtering probability calculated on each plasma facing
surface using the local background plasma ion flux:

Chemical sputtering prescribed by the Roth and Garcia-
Rosales (RG-R) model [1] or the Roth98 PSI model.   

Six physical sputtering options.  

Carbon source physics

Atomic carbon launched with a Thompson distribution.

Methane dissociation via Ehrhardt and Langer.
[1] J. Roth and C. Garcia-Rosales, Nucl. Fusion 36 (1996) 1647.  
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The MCI computational domain extends
from the 95% flux surface to the DIII-D walls
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shot 87506

Simulations done with attached outer strike 
points provide good physics benchmarks
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   Fluid codes are used to calculate the
MCI background plasma

p2152nog

T   = 9.5 eV
*

e

T   = 1.2 eV
*

e

en   = 2.6 x 10+ 21 m-3

en   = 3.5 x 10+ 20 m-3

T   = 48.8 eVe

T   = 78.2 eVe
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Cell specific atomic data is processed
using the fluid background plasma 

p2152nog

R         = 2.6 x 10    sionize
5

,
-1

R         = 3.4 x 10    sionize
5

,
-1

R         = 8.8 x 10    s
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ionize
6 -1
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7 -1
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UEDGE solution has large flow reversal region
at outer strike point with a detached inner leg

Flow reversal .
points

p2152nog
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Attached0
outer strike

point

tee-aps99.08)



MCI’s sputtering and transport models are
benchmarked against measured emissions  

Qualitatively and quantitatively compared to MCI’s
simulated 2D line radiation and total radiated power.

Quantitatively compared to MCI’s total radiated power 
integrated over the divertor and SOL region.

Spatially integrated total radiated power

Measured 2D spatial emissions
TTV carbon

line radiation
Bolometric total 1
radiated power
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DIII-D TTV Camera Shot 87507:2240
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Shot 87507, t = 2240 ms

tee-aps99.09)



MCI simulation results are particularly
sensitive to the carbon sputtering physics 

Goal -> Benchmark sputtering models 

Y        = Y        +  YPHY5 CHEMTOT6
The total carbon sputtering yield (Y      ) may depend on
both physical and chemical sputtering processes.

TOT6

Six physical sputtering models are used in MCI

Smith81

Smith78

Bohd84

Roth91

Roth94

Y=Const.

Some models predict a two order of magnitude increase
as the incident particle energy goes from 10 -> 100 eV.
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Excluding neutral flux contributions RG-R 
chemical sputtering produces about  the

same CI flux as the Smith81 model

T = measured plate temp. (max = 434   K)oC

E   = incident D   energy (max = 44.8 eV)+o

incident D   flux (max = 3.0 x 10     part/m   /s)+ 23
D

2Φ =

oC373   K
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Divertor target plate parameters used to calculate
physical and chemical sputtering yields
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Total neutrals = 309.8e19 s    (496.3 Amps)-1
RG-R chemical + Roth94
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Divertor Target Plate Cell Number

Comparison between the RG-R chemical sputtering model,
driven by a D   flux only, and two physical sputtering models +
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Changes in the radial profile of the carbon source distribution
affect the charge state balance but do not have a significant
impact on the 2D spatial distribution of the carbon radiation.  

Divertor + SOL carbon inventory and
radiated power increase with RG-R sources

as compared to constant physical sputtering 
Shot 87506, t = 2240 ms  

         P            = 1718 kWdiv+SOL
carbonmeasured divertor + SOL radiation: 

Species
F

Inventory (x 10   )17
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Uncertainies are found in the carbon source physics 
when measured target plasma parameters are used in MCI 

 Shot 87506, t = 2240 ms  
         P            = 1718 kWdiv+SOL

carbonmeasured divertor + SOL radiation: 

Phys. sputteringQ
source model Inventory (x 10   )17 Rad. P. (kW)

Y = 10 -3

p2177nog

The Roth91 physical sputtering model driving the RG-R chemical sputtering source gives
the best match between the measured total power and the simulated total power.  
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MCI simulation results using
measured target plate plasma
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RG-R and Roth98 chemical sputtering result in too much
radiation when neutral flux contributions are included

Shot 87506, t = 2240 ms:           P            = 1718 kWdiv+SOL
carbonmeasured divertor + SOL radiation: 

Experimental results

MCI results
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Linear devices such as PISCES-B at UCSD are ideal for
validating the detailed physics modules used in MCI   

MCI’s Molecular dissociation and transport
models are validated with PISCES data
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parallel ion and electron thermal gradient forces
are relatively weak compared to tokamak divertors   

Ehrhardt and Langer [PPPL-2477, Sept. 1987] methane
dissociation, with MCI transport physics, is being
validated using data from PISCES-B where the:    

neutral deturium densities are large compared to
the plasma density (1-1.75 x 10    cm    )   14 -3

E   = 1.75-2.25 V/m and D   flow (v = 10.1-11.4 km/s)
are directed toward the methane source   

||
+ 

D   >> D  , radial transport is dominated by neutral
collisions and molecular gyroradius effects    
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MCI’s Molecular dissociation and transport
models are being validated with PISCES data
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A 3D neutral collision and a velocity diffusion model are 
being implemented in MCI which should significantlly
reduce the CD penetration depth  

CD Penetration along z, r = 0
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The average core carbon density is a factor
of 7 lower with ADAS96 versus ADPAK data 
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Redeposition Range

Boron reduces the chemical sputtering
source originating from the divertor targets

without affecting physical sputtering 
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A non-uniform boron layer is simulated in MCI in order
to model the effect of erosion near the outer strike point
and redeposition near the inner strike point.  

Three mixtures of boron and carbon: no boron, 20% boron,
and 50% boron, are compared in the MCI simulations. The
mixed layer is only applied to the redeposition range shown
above.  
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Boron reduces the chemical sputtering
source rate and increases the core

carbon density 
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Increasing the boron fraction reduces the carbon density
and radiated power the divertor and SOL while increasing
penetration probability near segment #44 and the core C.  

14937.6

13461.3

12757.5

Total C
flux (A)

Percent
  boron

0

20

50

Total number of
core C particles

899

885

1025

  Total number of div.
+ SOL C particle (E19)

Total div. + SOL 
power (kW) E19

1.74
0.96
0.51

5518

3920

 2966

These results are consistent with the DIII-D measurements
and highlight the point that energetic atomic carbon, from
physical sputtering, has a higher probability of entering the
core than thermal molecules from chemical sputtering. 



Results and conclusions  

MCI WWW page�

lithos.gat.com/mci

Since atomic carbon leaves the target plates with more energy than molecular
carbon it can penetrate deeper into the plasma in regions where the CI to CII
ionization rates are small compared to the molecular dissociation rates. Most of
the divertor carbon reaching the core originates from regions where sputtering
rates are small but atomic neutral carbon mean free path lengths are long.

MCI simulations with mixed boron and carbon divertor targets show that molecular
carbon from chemical erosion is less likely to reach the core plasma than atomic
carbon from physical sputtering.  

Increasing the boron/carbon fraction on the target plate surfaces reduces
the carbon density and total radiated power in the divertor and SOL while
increasing the carbon density in the core plasma. 

These results agree with DIII-D measurements but only represent carbon
contributions from the divertor. MCI is being also used to assess the
relative importance of wall sources for determining the core carbon density 

Accurate atomic data and carefully validated molecular dissociation models,
using PISCES data, are particularly important for understanding why
molecular carbon is less effeciive in reaching the core than atomic carbon 
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