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Stability of Finite-n Global Magnetohydrodynamic
Modes Using the GATO Stability Code1 M.S. CHU, S.K. WONG,
L.L. LAO, A.D. TURNBULL, General Atomics, M.S. CHANCE, Prince-
ton Plasma Physics Laboratory — This work extends the capability of
the GATO stability code2 to analyze realistic numerical tokamak equi-
libria for their stability to higher n (∼ 5–10) MHD modes. This is
motivated by the experimental evidence of these modes being relevant
for both plasma termination and the behavior of ELMs. The balloon-
ing angle transformation3 is applied to the displacement variables in the
GATO representation. The potential energy matrix is constructed with
the inclusion of extra mapping quantities. The vacuum energy computed
from the Greens function is also modified to couple to the transformed
displacement at the plasma boundary. The resultant eigenvalue problem
is solved with the modified boundary condition in the poloidal direction
suitable for these transformed variables. The dependence of the plasma
stability as a function of toroidal mode number and plasma equilibrium
properties will be presented.
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MOTIVATION

— Higher (n ~ 5) toroidal mode number MHD modes have
been reported to be relevant for a number of exper-
imental fluctuations, especially in NCS discharge at
the plasma edge and also for low aspect ratio ST

— Success of correlation of these observations with
either ballooning or peeling mode criterion demands
a more realistic evaluation of stability of plasma to
higher (n > 5)

— More intrinsic interest in the understanding of plasma
behavior for higher n and non-circular cross-section
especially the edge region of tokamaks with high
triangularity and squareness

— The number of matrix elements required scales as

  nψnχ
2 .  Computer time scales as   nψnχ

2 lnnχ .  For a
tokamak configuration,   nψ ~ nq and  nχ ~ nq.  Therefore
the computer time scales as   n

3q3 ln(nq) .  An alterna-
tive formulation using the ballooning variables* allows

  nχ ≈ cons tant.  Therefore the resultant computer time
scales as   nq.

*R. Gruber et al., Computer Physics Communications 24, p. 363–376 (1981)
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GATO POTENTIAL ENERGY FUNCTIONAL

    
Wp = π

2
µ0 ∫ dψ dχδWl

where the local potential energy density   δWl is a sum of
positive contributions and one negative term

    δWl = (δBψ )2

+ δBχ + ξψJϕ( )2

  + δBϕ + ξψJχ( )2

+  Compressional Energy

  − 2JX2K Instability Drive



329-99-3A

(B⋅∇ )
→→

 TERMS IN POTENTIAL ENERGY FUNCTIONAL*
FORCE THE DISPLACEMENTS (X,U,Y) TO VARY FAST

IN THE POLOIDAL DIRECTION AS n INCREASES

    
Wp = π

2µ0
∫ dψ dχδW
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X =
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f
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r2

r
ξ ⋅ t̂ − Y + JαX( )

Bernard, Helton, Moore, CPC 24, p. 377 (1981).
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IN BALLOONING (HIGH n) VARIABLES,
THE PLASMA DISPLACEMENT IS ASSUMED
TO VARY SLOWLY ALONG THE FIELD LINE

Or the variation along the eikonal (toroidal) angle

  
φ̃ = φ − fJ

r2

χ

∫ dχ = φ −Iq (χ,ψ)

is small.  The displacement is assumed to have the following
dependence on this angle

  ξ einφ = ξ̃ einφ̃   .

Terms in the potential energy transforms in the following way

  

∂ξ
∂ψ

→ ∂ξ̃
∂ψ

− in ξ̃ Iq,ψ

  

∂ξ
∂χ

→ ∂ξ̃
∂χ

− in ξ̃ fJ

r2          or

  

∂ξ
∂χ

+ in
fJ

r2 ξ → ∂ξ̃
∂χ

Then the potential energy functional does not contain factors
of (∂ / ∂χ ) + in(Jf / r2 )[ ]  operating on physical quantities
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FOR GATO POTENTIAL ENERGY FUNCTIONAL
IN HIGH n VARIABLES, TERMS MULTIPLIED
WITH n ARE ALWAYS IN THE COMBINATION

(U + XIq, ψ)

    
δWl = 1
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BOUNDARY CONDITION

With the ballooning angle transformation, the computation
domain remains

χ0 ≤ χ ≤ χ 0 + 2π

But the boundary condition is changed from

ξ (χ0 + 2π) = ξ(χ0 )

to

  ξ̃ (χ0 + 2π) = ξ̃ (χ0 )e2inq(ψ)π
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VACUUM ENERGY

The vacuum package has to be modified to accept the   ̃ξ  as
input variable

  
δWv =

i,j
∑Xiwij

vacX j

transforms into

  
Wv =

i,j
∑ X̃iw̃ij

vacX̃ j

where

  
w̃ij

vac = e
in[q(χi )−q(χ j )]wij

vac

For high n, accurate vacuum energy computation requires
putting more grid points at the vacuum boundary than inner
plasma surfaces
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MODIFICATIONS TO
THE GATO CODE PACKAGE

(1) Mapping:  Compute   Iq (χ,ψ),   Iq,ψ

(2) Matrix Elements Generation:

Compute   δWl,  δWv

(3) Eigenvalue Solver:  No change

(4) Plotting:  transform back from ξ̃  to ξ
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COMPARISON OF n = 10 MODE
FOURIER HARMONICS OF (ξψ, ξχ)

5.00
Im(Xpsi)

Im(Xpsi)

norm psi

norm psi

norm psi

norm psi

Re (Xchi)

4.00

3.00

2.00

1.00

0.00

0.00

4.00

Re (Xchi)
3.00

2.00

1.00

0.00

–1.00

–2.00

3.00

2.00

1.00

0.00

–1.00

–2.00

–3.00

–1.00

–1.00

–2.00

–2.00

–3.00

–3.00

–4.00

–4.00

–5.00

–6.00

–5.00

–6.00

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

Fourier Analysis for imag Xpsi, chi = pest chi

With ballooning transformation only low order harmonics are large

Without ballooning transformation higher order harmonics present

Fourier Analysis for imag Xpsi, chi = pest chi Fourier Analysis for real Xchi : chi = pest chi

Fourier Analysis for real Xchi : chi = pest chi



COMPARISON OF GROWTH RATES
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● For the equilibrium with a circular cross-section the growth
rate using ballooning transformation converges relatively
fast at high n. Shown are the comparison of growth rates as
a function number of flux surfaces and grid points (nψ × nχ).
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COMPARISON OF n = 5 MODE (X)
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COMPARISON OF n = 10 MODE
FOURIER HARMONICS OF (ξψ, ξχ)
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COMPARISON OF n = 15 MODE (X)
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SUMMARY AND FUTURE DIRECTIONS

(1) The GATO code has been modified to the ballooning

variable

(2) Initial testing utilizing both a circular and an

elongated equilibrium in DIII–D geometry indicates

that this approach can be utilized to facilitate study of

high (~20) n stability with modest number of grid points

(3) The vacuum package needs to be modified to the

ballooning variables for the study of peeling modes

(with Chance)

(4) Add an up–down symmetric option



TEST CASE: A HIGH β TOKAMAK WITH A
D SHAPE CROSS–SECTION AND q0 < 1
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COMPARISON OF GROWTH RATES
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● For the equilibrium with DIII–D cross-section the growth rate
using ballooning transformation converges relatively fast at
high n. Shown are the comparison of growth rates as a function
of number of flux surfaces and grid points in the poloidal
direction (nψ × nχ).
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COMPARISON OF n = 5 MODE (X)
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Without ballooning transformation 

With ballooning transformation 
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COMPARISON OF n = 15 MODE (X)
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