Time-dependent Modeling of Sustained Advanced Tokamak Scenarios

T. A. Casper,

L. L. LoDestro and L. D. Pearlstein LLNL M. Murakami ORNL L.L. Lao and H.E. StJohn GA

We are modeling time-dependent behavior of advanced tokamak operating modes sustained by electron cyclotron heating and current drive for a variety of plasma conditions and heating locations. Using experimentally achieved DIII-D discharge conditions with either theorybased or experimentally fitted transport models, we investigate techniques to control the hollow current profiles required for steadystate AT operation. For negative shear conditions, we include the effects of strong heating and variations in ion and electron temperatures and density profiles. We find that, at moderate levels of microwave power for the DIII-D system, we can sustain transport barriers for long intervals with evolution to non-inductively current-driven conditions under many scenarios. At the high temperatures representative of high performance discharges in DIII-D, the equilibration time is fairly long, taking several seconds to reach the non-inductively driven state. We will present details of these time-dependent simulations investigating methods for current profile control including effects of temporal variations of neutral beam and electron cyclotron heating. Work support by U.S. DOE W-7405-ENG-48 at LLNL.

Motivation: development of advanced tokamak scenarios

- Negative central shear (NCS) discharges require a non-inductively sustained hollow current profile in steady state.
- ***** High performance, $\beta_n H \sim 10$, with high bootstrap current fraction, $f_{BS} \sim 50\%$, may be more easily achieved in H-mode-like operation.
- Electron cyclotron heating (ECH) power in DIII-D is being increased and operating scenarios need to be explored.
- Development of tools to explore optimization and use of ECH and neutral beam injection (NBI) power
 - Feedback modification of plasma parameters
 - * Combined use of ECH and NBI heating and current drive
 - Stability control
 - Guide for experiments

Time-dependent simulations

For high performance NCS with L-mode edge, ECH/ECCD increases the duration the barrier is maintained

- At P_{ECH} comparable to that available on DIII-D, strong modification of the q-profile increases barrier duration
- Density control optimizes performance control of peak density for heating/current drive
 efficiency and profile for bootstrap alignment

ECH/ECCD modification of current profile in high performance Hmode target shot

- ECH provides an ability to modify the current profile , e.g. raise q, during evolution to steady state
- Optimization of NBI and EC heating and current drive is important
- Density control provides some control of q₀ at fixed β_n → need for coreedge coupled simulations

Shot #92668 simulation **>** Extend duration of negative shear plasma

- * β collapse due to peaked pressure profiles
- ★ Corsica: density profile, I_p, B_T and P_{NBI} fixed

Corsica simulations initialized with measured profiles at 1.45 sec

Transport model used for barrier dynamics simulations

Evolve plasma equilibrium, current distribution and temperatures

Use Gaussian approximation to EC power deposition profile from TORAY

efficiency, γ , from measurements

Current drive contributions at 2.0 sec.
 for power absorbed at ρ=0.5

P _{ECH}	I _{ECCD}	I _{BSCD}	I _{NBCD}	I _P
1 MW	28kA	480kA	307kA	1.48MA
5 MW	185kA	640kA	321kA	1.48MA
7.5MW	320kA	726kA	300kA	1.38MA
10 MW	460kA	660kA	340kA	1.49MA

Summary NCS simulations: Increasing P_{EC} and decreasing n_e increase the duration $\rho(q_{min})$ is maintained

At power > ~ 8MW, simulations indicate $\rho(q_{min})$ is sustained for times > 20sec.

- φ(q_{min}) held constant
 by ECCD until OH
 current diffusion
 pushes q_{min} inside
 the heating location
- Current profiles at steady-state are non-inductively driven, e.g. I_{OH} ~ 0.
- q-profile evolution
 NCS sustained
 by ECH/ECCD

ECCD locally modifies q-profile to maintain barrier

ECCD locally depresses q profile to maintain barrier

- Eventually, J_{OH} diffuses inward and pulls q_{min} down & the barrier is lost
 - Late in time, noninductive current is peaked on axis due to NBI geometry and results in a monotonic q profile
- Solution is off-axis NBI or trade-off of NBI for heating source near the axis without current drive.

Barrier moves inward after OH current diffusion moves $\rho(q_{min})$ inside heating location

As $\rho(q_{min})$ moves in, the NB heating efficiency and, therefore, bootstrap current drive decreases $\rightarrow T_i$ and β_N drop.

Maximum "figure of merit" obtained when heating at ρ^{a} .35

ECCD at ρ =.4 is well aligned with J_{BS} \clubsuit "good" total current profile

Discussion: NCS with L-mode edge

- * At high power, ECH/ECCD provides a means to sustain $\rho(q_{min})$ for long durations in NCS discharges with an L-mode edge for stability
 - * 8 MW inside barrier maintains $\rho(q_{min})$ for times > several hundred $\tau_{\rm E}$
 - ★ Heating in the ∇ n region at 4.5MW improves capability to maintain $\rho(q_{min})$
 - Lower n_e reduces the ECH power required
- High temperature and neutral beam current overdrive make late-time qprofile control difficult ir require innovative control of heating and current drive.
- Density profile control bootstrap current alignment is critical for maintaining $\rho(q_{min})$ at low ECH power.

APS tac Nov99

Broadening the density profile sustains $\rho(q_{min})$ for long duration at lower P_{EC} due to ∇n bootstrap

Developing methods to control the current and q profiles

- Integrated modeling
 Corsica provides an efficient way to explore methods to control profile evolution
- Time-dependence
 equilibrium and transport converged including current diffusion, heating and fueling sources
- New interactive stability assessment Glasser's DCON package – many thanks to Glasser and Pearlstein for adding this package to Corsica and, with Turnbull, for benchmarking it with other codes.
- Efficient computations runs on workstations reasonably fast
- Interactive parameters, sources and calculations modified in "real" time (or batch if you want)

Reducing P_{NB} controls q-profile late in time - holds q_{min} >1

ECH maintains $\rho(q_{min})$ late in time barrier shrinks to bootstrap supported region when ECH is off

Development and optimization of ECH and NBI – ECH/ECCD target shot (99411)

- DIII-D shot 99411: high performance
 ELMing H-mode at β_N*H_{89P} ~ 9
- Combined role of ECH/NBI in sustaining such a discharge at steadystate
 - Time-dependent variation in the mix of power
 - ✤ Stability
- Measured χ_i and χ_e used in simulations chi's based on onetwo/Corsica analysis

* χ held fixed in time and space

- Scaled for confinement
- Ohmic drive turned off to look for non-inductively driven steady state

➡ I_p drops (a little) in time

Shot #99411 simulation **Provide Structure** electron cyclotron and neutral beam heating and current drive

Corsica simulations initialized with measured profiles at 1.7 sec

APS tac Nov99

TORAY-predicted EC current drive deposition and measured efficiency

Time-dependent simulations indicate off-axis ECH modification of the current profiles

Control of multiple sources, density and stability become the issues.

ECH provides a route to maintaining higher q₀ operation

Demonstration of effects of ECH power on current profile with power change at 5 seconds.

Peak density scan \Rightarrow ability to modify current profile at constant βn

Time-dependent stability simulation $\Rightarrow P_{EC} = 3MW$ with P_{NBI} varied to change β_N

Comparison of internal stability at 15 sec. and at 17 sec.

Packages currently available for integrated modeling with Corsica

corsica> l	ist packag	es	
Priority	Name	Long Name	Status
3	par	Basis System	up
34	eq	eq: calculate an equilibrium	generate
23	ceq	ceq: constrained equilibria via	up
22	meq	meq: minimize eq with constraint	up
25	eqt	eqt: equilibrium temporaries	up
24	vpf	vpf: vertical stability	up
33	ctr	ctr: core transport	up
19	nbi	nbi: NB heating & CD	up
32	csc	csc: inter-package communication	up
17	mth	mth: mathematical routines	up
16	uec	Core-edge coupling package	up
15	rfl	rfl: reflectometry diagnostics	up
14	dcn	dcn: MHD global stability	up
13	ctl	Run Controller Package	up
12	svd	Singular Value Decomposition	up
11	hst	History Package	up
10	pfb	PFB Interface	up
9	ezc	EZCURVE/NCAR Graphics	up
8	ezd	Device Package	up
7	iso	3-D Isosurface Plotting Routine	up
6	srf	3-D Surface Plotting Routine	up
5	bes	Bessel builtins	up
4	fft	Fast Fourier Transforms	up
•			-

corsica>

Summary/Conclusions

- Simulations with the gyro-Bohm model indicate that moderate ECH powers in DIII-D can have a significant effect on NCS discharges with L-mode edge.
- ECH appears to have a more subtle effect on the H-mode target discharges indicating that dominant effects may enter through the q-profile or stability.
- We are developing control concepts in Corsica using time-dependent equilibrium, transport, heating and current diffusion.
- The DCON stability package (Glasser) is now functional for assessing MHD stability of simulated discharge evolution.

